The Effect of Diallyl Trisulfide Administration on The Viability of MDA-MB-231 Cell Lines
Main Article Content
Abstract
Diallyl trisulfide or DATS is an important organic sulphur compound (OSCs) of garlic that has been recognized for its ability to inhibit migration and invasion processes, promote programmed cell death, and impede the proliferation of breast cancer cells. However, the most effective dosage of DATS to decrease survival rate and cell viability of triple-negative breast cancer cell line has been undetermined. The present study aimed to discover the MDA-MB-231 (triple-negative breast cancer cell line) viability differences due to the addition of DATS in several doses. DATS was administered to 6 groups of MDA-MB-231 cell cultures at different concentrations (20, 40, 80, 160, and 320 μM), with a control group. Cell viability was evaluated using colorimetric MTT assay. The study reported that DATS effectively inhibited the cell line survival rate. Treatment with DATS at a dose of 20 μM or higher led to cell death and a significant MDA-MB-231 cell line viability reduction compared to the control group but not between the intervention groups. The findings demonstrated that DATS had the ability to trigger cell death and possess potential anti-cancer properties particularly in triple-negative breast cancer. A novel observation was made when low dose of DATS exhibited comparable efficacy to the large dose in reducing MDA-MB-231 cell line viability, while minimizing the potential for negative side effects.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Farhat Z, Hershberger PA, Freudenheim JL, Mammen MJ, Hageman Blair R, Aga DS, Mu L. Types of garlic and their anticancer and antioxidant activity: a review of the epidemiologic and experimental evidence. Eur J Nutr. 2021;60(7):3585-3609. doi:10.1007/s00394-021-02482-7
Lawson L, Hunsaker S. Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic Foods. Nutrients. 2018;10(7):812. doi:10.3390/nu10070812
Almatroodi SA, Alsahli MA, Almatroudi A, Rahmani AH. Garlic and its Active Compounds: A Potential Candidate in The Prevention of Cancer by Modulating Various Cell Signalling Pathways. Anticancer Agents Med Chem. 2019;19(11):1314-1324. doi:10.2174/1871520619666190409100955
Liu Y, Zhu P, Wang Y, Wei Z, Tao L, Zhu Z, Sheng X, Wang S, Ruan J, Liu Z, Cao Y, Shan Y, Sun L, Wang A, Chen W, Lu Y. Antimetastatic Therapies of the Polysulfide Diallyl trisulfide against Triple-Negative Breast Cancer (TNBC) via Suppressing MMP2/9 by Blocking NF-κB and ERK/MAPK Signaling Pathways. Paulmurugan R, ed. PLoS One. 2015;10(4):e0123781. doi:10.1371/journal.pone.0123781
Veterini L, Savitri AD, Widyaswari MS, Muhammad AR, Fairus A, Zulfikar MQB, Astri M, Ramasima NA, Anggraeni DP, Nainatika RSA. In Silico Study of the Potential of Garlic Allicin Compound as Anti-Angiogenesis in Breast Cancer. TJNPR. 2021;5(11):1995-1999. doi:10.26538/tjnpr/v5i11.17
Desai G, Schelske-Santos M, Nazario CM, Rosario-Rosado R V., Mansilla-Rivera I, Ramírez-Marrero F, Nie J, Myneni AA, Zhang ZF, Freudenheim JL, Mu L. Onion and Garlic Intake and Breast Cancer, a Case-Control Study in Puerto Rico. Nutr Cancer. 2020;72(5):791-800. doi:10.1080/01635581.2019.1651349
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics. 2023;13(14):2390. doi:10.3390/diagnostics13142390
Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research. 2020;22(1):1-13. doi:10.1186/S13058-020-01296-5/TABLES/3
Malla RR, Marni R, Chakraborty A, Kamal MA. Diallyl disulfide and Diallyl trisulfide in garlic as novel therapeutic agents to overcome drug resistance in breast cancer. J Pharm Anal. 2022;12(2):221-231. doi:10.1016/j.jpha.2021.11.004
Gordon J, Brown M, Reynolds M. Cell-Based Methods for Determination of Efficacy for Candidate Therapeutics in the Clinical Management of Cancer. Diseases. 2018;6(4):85. doi:10.3390/diseases6040085
Subramanian MS, Nandagopal GMS, Nordin SA, Thilakavathy K, Joseph N. Prevailing knowledge on the bioavailability and biological activities of Sulphur compounds from Alliums: A potential drug candidate. Molecules. 2020;25(18). doi:10.3390/molecules25184111
Liu Y, Zhao Y, Yingyu W, Zhu P, Wei Z, Siliang W, Tao L, Liu Z, Wu H, Sheng X, Lu Y. Suppressive role of Diallyl trisulfide in the activated platelet-mediated hematogenous metastasis of MDA-MB-231 human breast cancer cells. Int J Mol Med. 2017;39(6):1516-1524. doi:10.3892/ijmm.2017.2953
Kanga KJW, Mendonca P, Soliman KFA, Ferguson DT, Darling-Reed SF. Effect of Diallyl trisulfide on TNF-α-induced CCL2/MCP-1 release in genetically different triple-negative breast cancer cells. Anticancer Res. 2021;41(12):5919-5933. doi:10.21873/anticanres.15411
Marni R, Kundrapu DB, Chakraborti A, Malla RR. Insight into drug sensitizing effect of Diallyl disulfide and Diallyl trisulfide from Allium sativum L. on paclitaxel-resistant triple-negative breast cancer cells. J Ethnopharmacol. 2022;296. doi:10.1016/j.jep.2022.115452
Gest C, Joimel U, Huang L, Pritchard LL, Petit A, Dulong C, Buquet C, Hu CQ, Mirshahi P, Laurent M, Fauvel-Lafève F, Cazin L, Vannier JP, Lu H, Soria J, Li H, Varin R, Soria C. Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines. BMC Cancer. 2013;13(1):63. doi:10.1186/1471-2407-13-63
Lee D, Lee J, Vu-Huynh KL, Van Le TH, Tuoi Do TH, Hwang GS, Park JH, Kang KS, Nguyen MD, Yamabe N. Protective Effect of Panaxynol Isolated from Panax vietnamensis against Cisplatin-Induced Renal Damage: In Vitro and In Vivo Studies. Biomolecules. 2019;9(12):890. doi:10.3390/biom9120890
Darling-Reed SF, Nkrumah-Elie Y, Ferguson DT, Flores-Rozas H, Mendonca P, Messeha S, Hudson A, Badisa RB, Tilghman SL, Womble T, Day A, Jett M, Hammamieh R, Soliman KFA. Diallyl Sulfide Attenuation of Carcinogenesis in Mammary Epithelial Cells through the Inhibition of ROS Formation, and DNA Strand Breaks. Biomolecules. 2021;11(9):1313. doi:10.3390/biom11091313
Cheng SY, Yang YC, Ting KL, Wen SY, Viswanadha VP, Huang CY, Kuo WW. Lactate dehydrogenase downregulation mediates the inhibitory effect of Diallyl trisulfide on proliferation, metastasis, and invasion in triple-negative breast cancer. Environ Toxicol. 2017;32(4):1390-1398. doi:10.1002/tox.22333
El-Saber Batiha G, Magdy Beshbishy A, G. Wasef L, Elewa YHA, A. Al-Sagan A, Abd El-Hack ME, Taha AE, M. Abd-Elhakim Y, Prasad Devkota H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients. 2020;12(3):872. doi:10.3390/nu12030872
Stan SD, Abtahi M. Diallyl Trisulfide Induces Apoptosis in Breast Ductal Carcinoma In Situ Derived and Minimally Invasive Breast Cancer Cells. Nutrients. 2022;14(7):1455. doi:10.3390/nu14071455
Ferguson DT, Taka E, Messeha S, Flores-Rozas H, Reed SL, Redmond B V., Soliman KFA, Kanga KJW, Darling-Reed SF. The Garlic Compound, Diallyl trisulfide, Attenuates Benzo[a]Pyrene-Induced Precancerous Effect through Its Antioxidant Effect, AhR Inhibition, and Increased DNA Repair in Human Breast Epithelial Cells. Nutrients. 2024;16(2):300. doi:10.3390/nu16020300
Sun S, Liu X, Wei X, Zhang S, Wang W. Diallyl trisulfide induces pro-apoptotic autophagy via the AMPK/SIRT1 signalling pathway in human hepatocellular carcinoma HepG2 cell line. Food Nutr Res. 2023;67. doi:10.29219/fnr.v67.8981
Jiang X, Zhu X, Liu N, Xu H, Zhao Z, Li S, Li S, Cai J, Cao J. Diallyl trisulfide Inhibits Growth of NCI-H460 in Vitro and in Vivo, and Ameliorates Cisplatin-Induced Oxidative Injury in the Treatment of Lung Carcinoma in Xenograft Mice. Int J Biol Sci. 2017;13(2):167-178. doi:10.7150/ijbs.16828
Hecht F, Pessoa CF, Gentile LB, Rosenthal D, Carvalho DP, Fortunato RS. The role of oxidative stress on breast cancer development and therapy. Tumor Biology. 2016;37(4):4281-4291. doi:10.1007/s13277-016-4873-9
Sarmiento-Salinas FL, Delgado-Magallón A, Montes-Alvarado JB, Ramírez-Ramírez D, Flores-Alonso JC, Cortés-Hernández P, Reyes-Leyva J, Herrera-Camacho I, Anaya-Ruiz M, Pelayo R, Millán-Pérez-Peña L, Maycotte P. Breast Cancer Subtypes Present a Differential Production of Reactive Oxygen Species (ROS) and Susceptibility to Antioxidant Treatment. Front Oncol. 2019; 9:480. doi:10.3389/fonc.2019.00480
Barrera G. Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy. ISRN Oncol. 2012; 2012:1-21. doi:10.5402/2012/137289
Gu H, Huang T, Shen Y, Liu Y, Zhou F, Jin Y, Sattar H, Wei Y. Reactive Oxygen Species-Mediated Tumor Microenvironment Transformation: The Mechanism of Radioresistant Gastric Cancer. Oxid Med Cell Longev. 2018; 2018:1-8. doi:10.1155/2018/5801209
Kim SJ, Kim HS, Seo YR. Understanding of ROS-Inducing Strategy in Anticancer Therapy. Oxid Med Cell Longev. 2019; 2019:1-12. doi:10.1155/2019/5381692
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol. 2019; 10:758. doi:10.3389/fphar.2019.00758
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85-100. doi:10.1038/s41580-019-0173-8
Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15(22):2922-2933. http://www.ncbi.nlm.nih.gov/pubmed/11711427
Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002;192(2):131-137. doi:10.1002/jcp.10111
Puccinelli MT, Stan SD. Dietary Bioactive Diallyl trisulfide in Cancer Prevention and Treatment. Int J Mol Sci. 2017;18(8):1645. doi:10.3390/ijms18081645
Cascajosa-Lira A, Andreo-Martínez P, Prieto AI, Baños A, Guillamón E, Jos A, Cameán AM. In Vitro Toxicity Studies of Bioactive Organosulfur Compounds from Allium spp. with Potential Application in the Agri-Food Industry: A Review. Foods. 2022;11(17):2620. doi:10.3390/foods11172620
Lee BC, Park BH, Kim SY, Lee YJ. Role of bim in Diallyl trisulfide-induced cytotoxicity in human cancer cells. J Cell Biochem. 2011;112(1):118-127. doi:10.1002/jcb.22896
Sielicka-Dudzin A, Borkowska A, Herman-Antosiewicz A, Wozniak M, Jozwik A, Fedeli D, Antosiewicz J. Impact of JNK1, JNK2, and ligase Itch on reactive oxygen species formation and survival of prostate cancer cells treated with Diallyl trisulfide. Eur J Nutr. 2012;51(5):573-581. doi:10.1007/s00394-011-0241-0
Ikele BC, Okoye CK, Ikele FC, Obiezue RN. Effects of Garlic (Allium sativum) on Serum Biochemical Parameters and Histopathological Changes in Wistar Rats (Rattus norvegicus). TJNPR. 2022;6(3):371-375. doi:10.26538/tjnpr/v6i3.12
Dutta A, Dahiya A, Prakash A, Agrawala PK. Acute toxicity of Diallyl sulfide derived from Allium sativum (garlic) in mice and its possible mechanisms. Phytomedicine Plus. 2021;1(3):100084. doi:10.1016/j.phyplu.2021.100084