LC-MS Chemical Profiling of Dichloromethane Fraction of Methanol Extract of <I>Syzygium samarangense</I> Stem Bark

Authors

  • Tukiran Tukiran Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, East Java, Indonesia
  • Ahmad M. Sururi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, East Java, Indonesia
  • Irene C. Constanty Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, East Java, Indonesia

DOI:

https://doi.org/10.26538/tjnpr/v8i4.30

Keywords:

Syzygium samarangense, methanol extract, Liquid Chromatography-Mass Spectrometry, Chemical profile

Abstract

Prior studies have demonstrated that Syzygium samarangense possesses antioxidant, antifungal, and anti-inflammatory properties as well asother advantages.The fruit iswidely consumed, yet the medical benefits of the stem bark as an alternative therapeutic option have not been explored. This research was performed to determine the specific chemicals contained in the dichloromethane fraction of the methanol extract of this plant. The powdered plant sample was extracted with methanol by maceration and fractionated with dichloromethane. The resulting dichloromethane fraction was then concentrated, and its chemical constituents were identified using LC-MS based onthe Willey and NIST libraries. The findings of this research showed the presence of 40 phytoconstituents in fivemain classes of secondary metabolites: phenolics, flavonoids, terpenoids, steroids, and others.This study explains the basic structures, compound derivatives, biological functions of the compounds identified in F2 with reference to relevant literature. The stem bark of S. samarangense predominantly contains compounds with significant bioactivity, including antioxidants, antifungal, anti-inflammatory, anticancer, and antiviral properties. This research offers valuable insight into the groundwork for the utilization of this plant and the selection of natural and synthetic substances.

References

Abdulrahman MD, Hama HA. Anticancer of genus Syzygium: a systematic review. Explor Target Antitumor Ther. 2023; 4(2): 273–293.

Idris NS, Khandaker MM, Rashid ZM, Majrashi A, Alenazi MM, Nor ZM, Mohd Adnan AF, Mat N. Polyphenolic compounds and biological activities of leaves and fruits of Syzygium samarangense cv. "Giant Green" at three different maturities. Horticulturae. 2023; 9(3): 326.

Srivastava R, Shaw AK, Kulshreshtha DK. Triterpenoids and chalcone from Syzygium samarangense. Phytochem. 1995; 38(3): 687–689.

Aung EE, Kristanti AN, Aminah NS, Takaya Y, Ramadhan R. Plant description, phytochemical constituents and bioactivities of Syzygium genus: A review. Open Chem. 2020; 18(1): 1256–1281.

Tarigan C, Pramastya H, Insanu M, Fidrianny I. Syzygium samarangense: review of phytochemical compounds and pharmacological activities. Biointerface Res Appl Chem. 2022; 12(2): 2084–2107.

Mollika S, Islam N, Parvin N, Kabir A, Sayem MW, Luthfunnesa SR. Evaluation of analgesic, anti-inflammatory and CNS activities of the methanolic extract of Syzygium samarangense leave. Glob J Pharmacol. 2014; 8(1): 39-46.

Tukiran T, Setiawan AR, Constaty IC, Safitri FN. The potency of Java Apple (Syzygium samarangense) as α-glucosidase and α-amylase inhibitor: an in-silico approach. Trop J Nat Prod Res. 2023; 7(8): 3741–3755.

Madhavi M, Ram MR. Phytochemical screening and evaluation of biological activity of root extracts of Syzygium samarangense. Int J Res Pharm Chem. 2015; 5(4): 753–763.

Metasari S, Elfita E, Muharni M, Yohandini H. Antioxidant compounds from the stem bark of Syzygium samarangense L. Molekul. 2020; 15(3): 175–183.

Constanty IC, Tukiran T. Aktivitas antioksidan dari fraksi n-heksana kulit batang tumbuhan jambu semarang (Syzygium samarangense). J Kim Ris. 2021; 6(1): 1–7.

Tukiran T, Suyatno S, Safitri FN. Identification of the chemical constituents of the selected fraction of the dichloromethane extract of Syzygium samarangense stem bark using LC-ESI-MS and evaluation its potential as antifungal agent. Indones J Chem. 2021; 21(2): 340–349.

Sururi AM, Raihan M, Aisa ER, Safitri FN, Constaty IC. Anti-inflammatory activity of stem bark dichloromethane fraction of Syzygium samarangense extract as COX-2 inhibitor: a bioinformatics approach. J Kim Ris. 2022; 7(2): 94–100.

Marzouk MM, Elkhateeb A, El-Shabrawy M, Farid MM, Kawashty SA, Abdel Hameed ESS, Hussein SR. Chemical profiling of Farsetia aegyptia Turra and Farsetia longisiliqua Decne and their chemosystematic significance. Trop J Nat Prod Res. 2020; 4(11): 953–960.

Elias TS, Dykeman PA. Edible wild plants: a North American field guide to over 200 natural foods. Sterling Publishing Company, Inc.; 2009.

Tramèr MR. It's not just about rubbing—topical capsaicin and topical salicylates may be useful as adjuvants to conventional pain treatment. BMJ. 2004; 328(7446): 998.

Mason L, Moore RA, Edwards JE, McQuay HJ, Derry S, Wiffen PJ. Systematic review of efficacy of topical rubefacients containing salicylates for the treatment of acute and chronic pain. BMJ. 2004; 328(7446): 995.

Haslam E, Cai Y. Plant polyphenols (vegetable tannins): gallic acid metabolism. Nat Prod Rep. 1994; 11: 41–66.

Tukiran, Putri DO. Chemical profile by LC-MS analysis from the selected fraction of methanol extract of Syzygium malaccense. Rasayan J Chem. 2021; 14(1): 295–305.

Limanto A, Simamora A, Santoso AW, Timotius KH. Antioxidant, α-glucosidase inhibitory activity, and molecular docking study of gallic acid, quercetin and rutin: a comparative study. Mol Cell Biomed Sci. 2019; 3(2): 67–74.

Varela-Rodríguez L, Sánchez-Ramírez B, Hernández-Ramírez VI, Varela-Rodríguez H, Castellanos-Mijangos RD, González-Horta C, Chávez-Munguía B, Talamás-Rohana P. Effect of gallic acid and myricetin on ovarian cancer models: a possible alternative antitumoral treatment. BMC Complement Med Ther. 2020; 20(1): 110.

Budavari S, O'Neil MJ, Smith A, Heckelman PE, Kinneary JF. The Merck index, an encyclopedia of chemicals, drugs, and biologicals, Whitehouse Station, NY: Merck Research Laboratories Division of Merck & Co. Inc Monogr. 1996; 2006: 289.

Anish RJ, Mohanan B, Aswathy TR, Nair A, Radhakrishnan KV, Rauf AA. An integrated approach to the structural characterization, long-term toxicological and anti-inflammatory evaluation of Pterospermum rubiginosum bark extract. J Ethnopharmacol. 2023; 308: 116262.

Klausmeyer P, Zhou Q, Scudiero DA, Uranchimeg B, Melillo G, Cardellina JH, Shoemaker RH, Chang CJ, McCloud TG. Cytotoxic and HIF-1α inhibitory compounds from Crossosoma bigelovii. J Nat Prod. 2009; 72(5): 805–812.

Czepa A, Hofmann T. Structural and sensory characterization of compounds contributing to the bitter off-taste of carrots (Daucus carota L.) and carrot puree. J Agric Food Chem. 2003; 51(13): 3865–3873.

Arapitsas P. Hydrolyzable tannin analysis in food. Food Chem. 2012; 135(3): 1708–1717.

Shimozu Y, Kuroda T, Tsuchiya T, Hatano T. Structures and antibacterial properties of isorugosins H–J, oligomeric ellagitannins from Liquidambar formosana with characteristic bridging groups between sugar moieties. J Nat Prod. 2017; 80(10): 2723–2733.

Jiang ZH, Tanaka T, Iwata H, Sakamoto S, Hirose Y, Kouno I. Ellagitannins and lignan glycosides from Balanophora japonica (Balanophoraceae). Chem Pharm Bull. 2005; 53(3): 339–341.

Barros J, Serrani-Yarce JC, Chen F, Baxter D, Venables BJ, Dixon RA. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nat Plants. 2016; 2(6): 1–9.

Pop DM, Timar MC, Varodi AM, Beldean EC. An evaluation of clove (Eugenia caryophyllata) essential oil as a potential alternative antifungal wood protection system for cultural heritage conservation. Maderas, Cienc. Tecnol. 2022; 24.

Haro-González JN, Castillo-Herrera GA, Martínez-Velázquez M, Espinosa-Andrews H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules. 2021; 26(6387): 1-25.

Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, Izadi M, Abdollahi M, Nabavi SM, Ajami M. Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol. 2017; 43(6): 668–689.

Sururi AM, Maharani DK, Wati FA. Potensi senyawa eugenol dari cengkeh (Syzygium aromaticum) sebagai inhibitor protease HIV-1 (PR). Unesa J Chem. 2023; 12(1): 26–30.

De Souza Farias SA, Da Costa KS, Martins JBL. Analysis of conformational, structural, magnetic, and electronic properties related to antioxidant activity: revisiting flavan, anthocyanidin, flavanone, flavonol, isoflavone, flavone, and flavan-3-ol. ACS Omega. 2021; 6(13):8908–8918.

Piccolella S, Pacifico S. Plant-derived polyphenols: a chemopreventive and chemoprotectant worth-exploring resource in toxicology. Adv Mol Toxicol. 2015; 161–214.

Shen J, Zhu X, Wu Z, Shi Y, Wen T. Uvangoletin, extracted from Sarcandra glabra, exerts anticancer activity by inducing autophagy and apoptosis and inhibiting invasion and migration on hepatocellular carcinoma cells. Phytomedicine. 2022; 94: 153793.

Maeda G, Van Der Wal J, Gupta AK, Munissi JJE, Orthaber A, Sunnerhagen P, Nyandoro SS, Erdélyi M. Oxygenated cyclohexene derivatives and other constituents from the roots of Monanthotaxis trichocarpa. J Nat Prod. 2020; 83(2): 210–215.

Dao TT, Tung BT, Nguyen PH, Thuong PT, Yoo SS, Kim EH, Kim SK, Oh WK. C-methylated flavonoids from Cleistocalyx operculatus and their inhibitory effects on novel influenza (H1N1) neuraminidase. J Nat Prod. 2010; 73(10): 1636–1642.

Wollenweber E, Kohorst G, Mann K, Bell JM. Leaf gland flavonoids in Comptonia peregrina and Myrica pensylvanica (Myricaceae). J Plant Physiol. 1985; 117(5): 423–430.

Huh J, Ha TKQ, Kang KB, Kim KH, Oh WK, Kim J, Sung SH. C-methylated flavonoid glycosides from Pentarhizidium orientale rhizomes and their inhibitory effects on the H1N1 influenza virus. J Nat Prod. 2017; 80(10): 2818–2824.

Mathiesen L, Malterud KE, Sund RB. Antioxidant activity of fruit exudate and C-methylated dihydrochalcones from Myrica gale. Planta Med. 1995; 61(06): 515–518.

Perera ND, Tomas D, Wanniarachchillage N, Cuic B, Luikinga SJ, Rytova V, Turner BJ. Stimulation of mTOR-independent autophagy and mitophagy by rilmenidine exacerbates the phenotype of transgenic TDP-43 mice. Neurobiol Dis. 2021; 154: 105359.

Utama K, Khamto N, Meepowpan P, Aobchey P, Kantapan J, Sringarm K, Roytrakul S, Sangthong P. Effects of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone from Syzygium nervosum seeds on antiproliferative, DNA damage, cell cycle arrest, and apoptosis in human cervical cancer cell lines. Molecules. 2022; 27(4): 1154.

Kim YJ, Kim HC, Ko H, Amor EC, Lee JW, Yang HO. Inhibitory effects of aurentiacin from Syzygium samarangense on lipopolysaccharide-induced inflammatory response in mouse macrophages. Food Chem Toxicol. 2012; 50(3–4): 1027–1035.

Janpaijit S, Sillapachaiyaporn C, Theerasri A, Charoenkiatkul S, Sukprasansap M, Tencomnao T. Cleistocalyx nervosum var. Paniala Berry seed protects against TNF-α-stimulated neuroinflammation by inducing HO-1 and suppressing NF-κB mechanism in BV-2 microglial cells. Molecules. 2023; 28(7): 3057.

Nishizawa M, Yamada H, Sano J, Itô S, Hayashi Y, Ikeda H, Chairul, Shiro M, Tokuda H. Structure of syzygiol: a skin-tumor promotion inhibitor. Tetrahedron Lett. 1991; 32(2): 211–212.

Lim TK. Syzygium samarangense BT - edible medicinal and non medicinal plants. Volume 3, Fruits. In: Lim TK, editor. Dordrecht: Springer Netherlands. 2012; 778–786.

Martínez A, Conde E, Moure A, Domínguez H, Estévez RJ. Protective effect against oxygen reactive species and skin fibroblast stimulation of Couroupita guianensis leaf extracts. Nat Prod Res. 2012; 26(4): 314–322.

Pan L, Matthew S, Lantvit DD, Zhang X, Ninh TN, Chai H, Carcache De Blanco EJ, Soejarto DD, Swanson SM, Kinghorn AD. Bioassay-guided isolation of constituents of Piper sarmentosum using a mitochondrial transmembrane potential assay. J Nat Prod. 2011; 74(10): 2193–2199.

Allard PM, Dau ETH, Eydoux C, Guillemot JC, Dumontet V, Poullain C, Canard B, Guéritte F, Litaudon M. Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors. J Nat Prod. 2011; 74(11): 2446–2453.

Li X, Zhai Y, Xi B, Ma W, Zhang J, Ma X, Miao Y, Zhao Y, Ning W, Zhou H, Yang C. Pinocembrin ameliorates skin fibrosis via inhibiting tgf‐β1 signaling pathway. Biomolecules. 2021; 11(8):1240.

Sharma N, Sharma M, Shakeel E, Jamal QMS, Kamal MA, Sayeed U, Khan MKA, Siddiqui MH, Arif JM, Akhtar S. Molecular interaction and computational analytical studies of pinocembrin for its antiangiogenic potential targeting VEGFR-2: a persuader of metastasis. Med Chem (Los Angeles). 2018; 14(6): 626–640.

Kumar N, Shrungeswara AH, Mallik SB, Biswas S, Mathew J, Nandakumar K, Mathew J, Lobo R. Pinocembrin-enriched fractions of Elytranthe parasitica (L.) Danser modulates apoptotic and MAPK cellular signaling in HepG2 cells. Anticancer Agents Med Chem. 2018; 18(11): 1563–1572.

Jiang L, Yang Y, Feng H, Zhou Q, Liu Y. Pinocembrin inhibits the proliferation, migration, invasiveness, and epithelial-mesenchymal transition of colorectal cancer cells by regulating LACTB. Cancer Biother Radiopharm. 2022; 37(7): 527–536.

Yang R, Yang J, Li Z, Su R, Zou L, Li L, Xu X, Li G, Liu S, Liang S, Xu C. Pinocembrin inhibits P2X4 receptor–mediated pyroptosis in hippocampus to alleviate the behaviours of chronic pain and depression comorbidity in rats. Mol Neurobiol. 2022; 59(12): 7119–7133.

Thring TS, Hili P, Naughton DP. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells. J Inflamm. 2011; 8(1): 1–7.

Lucarini M, Durazzo A, Di Stefano V, Di Lena G, Lombardi-Boccia G, Santini A. Bioactive phytochemicals from grape seed oil processing by-products BT - bioactive phytochemicals from vegetable oil and oilseed processing by-products. In: Ramadan Hassanien MF, editor. Cham: Springer International Publishing; 2023; 289–308.

Kovalev S V. Flavonoids from Lotus ucrainicus and L. arvensis. Chem Nat Compd. 2009; 45: 550–551.

Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther. 2007; 6(9): 2544–2553.

Zhang Y, Chen AY, Li M, Chen C, Yao Q. Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J Surg Res. 2008; 148(1): 17–23.

Sadeghi-Kiakhani M, Hashemi E, Miri FS, Tehrani-Bagha AR, Etezad SM. Dyeing of nylon fabric with two natural dyes, saffron (Crocus sativus L.) and weld (Reseda luteola L.), and study their dyeing, antioxidant, and antibacterial properties. Fibers Polym. 2023; 24(3): 1083–1092.

Huang Q, Gao B, Wang L, Hu YQ, Lu WG, Yang L, Luo ZJ, Liu J. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines. Toxicol Appl Pharmacol. 2014; 280(3): 550–560.

Zou J, Mi Y, Chen W, Liu Q, Wang J, Lou L, Zhao W. Alkyl phloroglucinol derivatives from Syzygium levinei and their differentiation-inducing activity. Planta Med. 2006; 72(06): 533–538.

Ye G, Huang C. Flavonoids of Limonium aureum. Chem Nat Compd. 2006; 42: 232–234.

Liu Y, Shang RF, Cheng FS, Wang XH, Hao BC, Liang JP. Flavonoids and phenolics from the flowers of Limonium aureum. Chem Nat Compd. 2016; 52: 130–131.

Acharyya RN, Mithila S, Rani S, Islam MA, Golder M, Ahmed KS, Hossain H, Dev S, Das AK. Antiallergic and anti-hyperglycemic potentials of Lumnitzera racemose leaves: in vivo and in silico studies. Proc Natl Acad Sci India Sect B - Biol Sci. 2023; 93(1): 147–158.

Li YR, Li GH, Zhou MX, Xiang L, Ren DM, Lou HX, Wang XN, Shen T. Discovery of natural flavonoids as activators of Nrf2-mediated defense system: structure-activity relationship and inhibition of intracellular oxidative insults. Bioorganic Med Chem. 2018; 26(18): 5140–5150.

Liu Y, Wang R, Ren C, Pan Y, Li J, Zhao X, Xu C, Chen K, Li X, Gao Z. Two myricetin-derived flavonols from Morella rubra leaves as potent α-glucosidase inhibitors and structure-activity relationship study by computational chemistry. Oxid Med Cell Longev. 2022; 2022: 9012943.

Mohamed YSN, Abas F, Jaafar AH, Azizan A, Zolkeflee NKZ, Abd Ghafar SZ. Antioxidant and α-glucosidase inhibitory activities of eight neglected fruit extracts and UHPLC-MS/MS profile of the active extracts. Food Sci Biotechnol. 2021; 30(2): 195–208.

Song X, Tan L, Wang M, Ren C, Guo C, Yang B, Ren Y, Cao Z, Li Y, Pei J. Myricetin: a review of the most recent research. Biomed Pharmacother. 2021; 134: 111017.

Rahmani AH, Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, Khan AA, Almatroodi SA. Myricetin: a significant emphasis on its anticancer potential via the modulation of inflammation and signal transduction pathways. Int J Mol Sci. 2023; 24(11): 9665.

Akash S, Kumer A, Rahman MM, Emran T Bin, Sharma R, Singla RK, Alhumaydhi FA, Khandaker MU, Park MN, Idris AM. Development of new bioactive molecules to treat breast and lung cancer with natural myricetin and its derivatives: a computational and SAR approach. Front Cell Infect Microbiol. 2022; 12: 952297.

De Sousa LRF, Ramalho SD, Burger MCDM, Nebo L, Fernandes JB, Da Silva MFDGF, Iemma MRDC, Correîa CJ, Souza DHF De, Lima MIS, Vieira PC. Isolation of arginase inhibitors from the bioactivity-guided fractionation of Byrsonima coccolobifolia leaves and stems. J Nat Prod. 2014; 77(2): 392–396.

Kishore N, Twilley D, Blom Van Staden A, Verma P, Singh B, Cardinali G, Kovacs D, Picardo M, Kumar V, Lall N. Isolation of flavonoids and flavonoid glycosides from Myrsine africana and their inhibitory activities against mushroom tyrosinase. J Nat Prod. 2018; 81(1): 49–56.

Op de Beck P, Cartier G, David B, Dijoux‐Franca M, Mariotte A. Antioxidant flavonoids and phenolic acids from leaves of Leea guineense G. Don (Leeaceae). Phyther Res An Int J Devoted to Pharmacol Toxicol Eval Nat Prod Deriv. 2003; 17(4): 345-347.

Fukunaga T, Miura T, Furuta K, Kato A. Hypoglycemic effect of the rhizomes of Smilax glabra in normal and diabetic mice. Biol Pharm Bull. 1997; 20(1): 44–46.

Silva DHS, Yoshida M, Kato MJ. Flavonoids from Iryanthera sagotiana. Phytochem. 1997; 46(3): 579–582.

Zhang QF, Guo YX, Zheng G, Wang WJ. Chemical constituents comparison between Rhizoma smilacis Glabrae and Rhizoma smilacis Chinae by HPLC-DAD-MS/MS. Nat Prod Res. 2013; 27(3): 277–281.

Christianson DW. Structural and chemical biology of terpenoid cyclases. Chem Rev. 2017; 117(17): 11570–11648.

Ashour M, Wink M, Gershenzon J. Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. Annu. Rev. Plant Biol. 2010; 40: 258–303.

Vigneshwaran S, Maharani K, Sivasakthi P, Selvan PS, Saraswathy SD, Priya ES. Bioactive fraction of Tragia involucrata Linn leaves attenuates inflammation in Freund's complete adjuvant-induced arthritis in wistar albino rats via inhibiting NF-κB. Inflammopharmacology. 2023; 31(2): 967–981.

Ren QL, Wang Q, Zhang XQ, Wang M, Hu H, Tang JJ, Yang XT, Ran YH, Liu HH, Song ZX, Liu JG, Li XL. Anticancer activity of diosgenin and its molecular mechanism. Chin J Integr Med. 2023; 29(8): 738-749.

Lerma-Torres JM, Navarro-Ocaña A, Calderón-Santoyo M, Hernández-Vázquez L, Ruiz-Montañez G, Ragazzo-Sánchez JA. Preparative scale extraction of mangiferin and lupeol from mango (Mangifera indica L.) leaves and bark by different extraction methods. J Food Sci Technol. 2019; 56(10): 4625-4631.

Majumder S, Ghosh A, Bhattacharya M. Natural anti-inflammatory terpenoids in Camellia japonica leaf and probable biosynthesis pathways of the metabolome. Bull Nat Res Cent. 2020; 44(1): 1–14.

Pometti C, Camps GA, Soldati MC, Sastre TV, Gavier G, Zelener N, Verga A, Ewens M, Saidman BO, Sérsic AN, Cosacov A. Species without current breeding relevance but high economic value: Acacia caven, Acacia aroma, Acacia visco, Prosopis affinis, Prosopis caldenia and Gonopterodendron sarmientoi. In: Low-Intensity Breeding of Native Forest Trees in Argentina: Genetic Basis for their Domestication and Conservation. 2020.

Starks CM, Williams RB, Norman VL, Lawrence JA, Goering MG, O'Neil-Johnson M, Hu JF, Rice SM, Eldridge GR. Abronione, a rotenoid from the desert annual

Abronia villosa. Phytochem Lett. 2011; 4(2): 72–74.

Demets O V., Takibayeva A, Kassenov R, Aliyeva M. Methods of betulin extraction from Birch bark. Molecules. 2022; 27(11): 3621.

Wang J, Shi Y.-M. Recent updates on anticancer activity of betulin and betulinic acid hybrids (a review). Russ J Gen Chem. 2023; 93(3): 610–627.

Chen IH, Du YC, Lu MC, Lin AS, Hsieh PW, Wu CC, Chen SL, Yen HF, Chang FR, Wu YC. Lupane-type triterpenoids from Microtropis fokienensis and Perrottetia arisanensis and the apoptotic effect of 28-hydroxy-3-oxo-lup-20(29)-en-30-al. J Nat Prod. 2008; 71(8): 1352–1357.

El-Seedi HR, Ringbom T, Torssell K, Bohlin L. Constituents of Hypericum laricifolium and their cyclooxygenase (COX) enzyme activities. Chem Pharm Bull. 2003; 51(12): 1439–1440.

Jiang W, Li X, Dong S, Zhou W. Betulinic acid in the treatment of tumour diseases: application and research progress. Biomed Pharmacother. 2021; 142: 111990.

Liu M, Liu X, He K, Jian Y, Li Y, Guo J, Yang J, Xu Z, Kang W. 3-Epi-betulinic acid 3-O-β-D-glucopyranoside (eBAG) induces autophagy by activation of AMP-activated protein kinase in hepatocellular carcinoma. Food Science and Human Wellness, 2024, 13(3): 1453-1464.

Cheng YB, Liu FJ, Wang CH, Hwang TL, Tsai YF, Yen CH, Wang HC, Tseng YH, Chien CT, Chen YMA. Bioactive triterpenoids from the leaves and twigs of Lithocarpus litseifolius and L. corneus. Planta Med. 2018; 84(01): 49–58.

Raga DD, Cheng CLC, Lee KCIC, Olaziman WZP, de Guzman VJA, Shen CC, Franco FC, Ragasa CY. Bioactivities of triterpenes and a sterol from Syzygium samarangense. Zeitschrift fur Naturforsch - Sect C J Biosci. 2011; 66(5–6): 235–244.

Perveen S. Introductory Chapter: Terpenes and terpenoids. IntechOpen. 2018; 1-12.

Bathori M, Toth N, Hunyadi A, Marki A, Zador E. Phytoecdysteroids and anabolic-androgenic steroids - structure and effects on humans. Curr Med Chem. 2008; 15(1):75–91.

Wei JH, Yin X, Welander P V. Sterol synthesis in diverse bacteria. Front Microbiol. 2016; 7: 990.

Parvin T, Akhlas MB, Khatun F, Akter A, Al Amin M, Islam MT, Rouf R. Phytochemical screening and evaluation of pharmacological activities of aqueous extract of Typhonium trilobatum (L.) Schott. Orient Pharm Exp Med. 2019; 19(13): 1-11.

Previtera L, Merola D, Monaco P. Acetogenins from the aquatic plant Elodea canadensis. Phytochemistry. 1985; 24(8): 1838–1840.

Kamboj S, Soni SK, Shukla G. Preparation, characterization, and safety assessment of statistical optimized probiotic supplemented herbal wine from Tinospora cordifolia. 3 Biotech. 2023; 13(4)(118): 1-14.

Ram H, Jaipal N, Charan J, Kashyap P, Kumar S, Tripathi R, Singh BP, Siddaiah CN, Hashem A, Tabassum B, Abd-Allah EF. Phytoconstituents of an ethanolic pod extract of Prosopis cineraria triggers the inhibition of HMG-CoA reductase and the regression of atherosclerotic plaque in hypercholesterolemic rabbits. Lipids Health Dis. 2020; 19(1)(6): 1–11.

Acebey-Castellon IL, Voutquenne-Nazabadioko L, Doan Thi Mai H, Roseau N, Bouthagane N, Muhammad D, Le Magrex Debar E, Gangloff SC, Litaudon M, Sevenet T, Hung N Van, Lavaud C. Triterpenoid saponins from Symplocos lancifolia. J Nat Prod. 2011; 74(2): 163–168.

Chen CY, Kao CL, Huang ST, Li HT. Secondary metabolites of Dimocarpus longan. Chem Nat Compd. 2022; 58(3): 578–580.

Aamer M, Iqbal S, Jabeen A, Ahmad MS, Asrar M, Yousuf S, Atia-tul-Wahab, Choudhary MI, Wang Y. Bioassay-guided isolation of anti-inflammatory constituents from Erigeron canadensis. Chem Nat Compd. 2021; 57: 749–751.

Rabbi F, Zada A, Nisar A, Sohail M, Khalil SK, Shah WA. Bioassay-guided isolation, identification of compounds from Sterculia diversifolia and investigation of their anti-glycation and antioxidant activities. Pharm Chem J. 2020; 53(12): 1102–1109.

Dai DN, Thang TD, Ogunwande IA. Chemical composition of essential oils from the leaves and stem barks of Vietnamese species of Polyalthia harmandii, Polyalthia jucunda, and Polyalthia thorelii. Nat Prod Res. 2014; 28(8): 555–562.

Jolanki R, Suhonen R, Henriks-Eckerman ML, Estlander T, Kanerva L. Contact allergy to salicyl alcohol in aspen bark. Contact Dermatitis. 1997; 37(6): 304–305.

O'Neil MJ. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. RSC Publishing; 2013.

Lee HH, Shin JS, Lee WS, Ryu B, Jang DS, Lee KT. Biflorin, Isolated from the flower buds of Syzygium aromaticum L., Suppresses LPS-Induced inflammatory mediators via STAT1 inactivation in macrophages and protects mice from Endotoxin Shock. J Nat Prod. 2016; 79(4): 711–720.

De Vasconcellos MC, Bezerra DP, Fonseca AM, Pereira MRP, Lemos TLG, Pessoa ODL, Pessoa C, De Moraes MO, Alves APNN, Costa-Lotufo LV. Antitumor activity of biflorin, an o-naphthoquinone isolated from Capraria biflora. Biol Pharm Bull. 2007; 30(8): 1416–1421.

Downloads

Published

2024-05-01

How to Cite

Tukiran, T., Sururi, A. M., & Constanty, I. C. (2024). LC-MS Chemical Profiling of Dichloromethane Fraction of Methanol Extract of <I>Syzygium samarangense</I> Stem Bark. Tropical Journal of Natural Product Research (TJNPR), 8(4), 6963–6874. https://doi.org/10.26538/tjnpr/v8i4.30