The Antibacterial and Antioxidant Activities of Endophytic Bacteria from Cassava Leaves (<i>Manihot esculenta</i> Crantz)

Authors

  • Alfiya Fariska Master Program in Biology, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh 23111, Aceh Indonesia.
  • Lenni Fitri Department of Biology, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh 23111, Aceh Indonesia.
  • Yulia S. Ismail Department of Biology, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh 23111, Aceh Indonesia.
  • Sasmiati Farach Dita YPPM Mandiri Pharmacy Academy, Banda Aceh 23111, Aceh Indonesia.

DOI:

https://doi.org/10.26538/tjnpr/v8i3.21

Keywords:

Endophytic bacteria, antibacterial, Manihot esculenta Crantz, antioxidant, 16S rRNA, cassava leaves

Abstract

Endophytic bacteria are bacteria that live in healthy plant tissue without causing harm. Several studies reported that endophytic bacteria produce active compounds that are similar to those released by their hosts and also have medicinal values. Cassava leaves (Manihot esculenta Crantz) are recorded to produce antibacterial and antioxidant activity from their compounds. Therefore, Endophytic bacteria from cassava leaves may have great potential to also have antibacterial and antioxidant activity. This study aims to determine the number of isolates, characterize them, and test the antibacterial and antioxidant activity of endophytic bacteria from cassava leaves. Antibacterial activity was tested using the agar diffusion method (Kirby-Bauer) and antioxidants were tested using the DPPH method (1,1-diphenyl-2-picrylhydrazyl). The isolation results obtained five isolates of endophytic bacteria that were successfully purified. Based on the results of morphological observations, Gram staining and biochemical tests, we estimated that isolates BEDS1 and BEDS4 belong to Pseudomonas while BEDS3, BEDS6 and BEDS7 belong to Bacillus. BEDS1 and BEDS2 had antibacterial activity against Staphylococcus aureus, while the BEDS7 isolate had antibacterial activity against all tested bacteria, namely Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus mutans. BEDS3 is the isolate that had the highest antioxidant activity with IC50 value of 14.94 ppm (very active). Based on the phylogenetic tree from 16S rRNA gene analysis, BEDS3 originated from the genus Bacillus because they form a sister group with Bacillus sp. strain nsu-3 with a bootstrap value of 100%.

References

Ferguson ME, Shah T, Kulakow P, Ceballos H. A global overview of cassava genetic diversity. PLoS One; 14(11): e0224763. Doi: 10.1371/journal.pone.0224763

Mustarichie R, Sulistyaningsih S, Runadi D. Antibacterial activity test of extracts and fractions of cassava leaves (Manihot esculenta crantz) against clinical isolates of Staphylococcus epidermidis and Propionibacterium acnes causing acne. Int. J. Microbiol. 2020;1:1–9. Doi: 10.1155/2020/1975904

Lima ZM, da Trindade LS, Santana GC, Padilha FF, da Costa Mendonça M, da Costa LP, Lopez JA, Macedo MLH. Effect of Tamarindus indica L. and Manihot esculenta extracts on antibiotic-resistant bacteria. Pharmacogn Res. 2017; 9(2): 195-199. Doi : 10.4103/0974-8490.204648

Cruz ALD, Buendia NJL, Condes RBJ. Antibacterial activity of cassava manihot esculenta leaves extract against Escherichia coli. Am. J. Environ. Clim. 2022; 1(2): 23-30. Doi: 10.54536/ajec.v1i2.484

Linn KZ, Phyu P, Phyu C, Myint P, Myint PP. Estimation of nutritive value, total phenolic content and in vitro antioxidant activity of Manihot esculenta Crantz. (Cassava) leaf. J. Med. Plants. Stud. 2018; 6(6): 73–78.

Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van der Heijden MGA, Schlaeppi K, Erb M. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018; 9(1):1-13. Doi: 10.1038/s41467-018-05122-7

Mssillou I, Agour A, Lyoussi B, Derwich E. Chemical constituents, in vitro antibacterial properties and antioxidant activity of essential oils from Marrubium vulgare L. Leaves. 2021. Trop J Nat Prod Res; 5(4): 661-667. Doi: 10.26538/tjnpr/v5i4.12

Kandel SL, Joubert PM, Doty SL. Bacterial endophyte colonization and distribution within plants. Microorganisms. 2017; 5(4): 77. Doi: 10.3390/microorganisms5040077

Singh M, Kumar A, Singh R, Pandey KD. Endophytic bacteria: a new source of bioactive compounds. BioTech. 2017; 7(5): 315. Doi: 10.1007/s13205-017-0942-z

Rustini R, Ismed F, Nabila GS. Antibacterial activities screening of endophytic bacterial extracts and identification bacteria isolated from lime peel (Citrus aurantifolia Swingle). J Sains Farm Klin. 2022; 9(1): 42-49. Doi: 10.25077/jsfk.9.1.42-49.2022

Dwi R, Putri W, Herdyastuti N. The potency of antioxidant compounds produced by endophytes bacteria on guajava leaves (Psidium guajava L.). Unesa J. Chem. 2021; 10(1): 55-63. Doi: 10.26740/ujc.v10n1.p55-63

Detha A, Datta FU, Beribe E, Foeh N, Ndaong N. Characteristics of lactic acid bacteria from Sumba Mares milk. J. Kaji. Vet. 2019; 7(1): 85-92. Doi: 10.35508/jkv.v7i1.1058

Smith M, Selby S. Microbiology for Allied Health Students: Lab Manual. Georgia: Galileo Open Learning Material; 2017. 69 p.

Aryani P, Kusdiyantini E, Suprihadi A. Isolation of endophytic bacteria of Alang-Alang (Imperata cylindrica) leaves and their secondary metabolites potential as antibacterial. J Akad Biol. 2020; 9(2): 20-28.

Cita YP, Muzaki FK, Radjasa OK, Sudarmono P. Screening of antimicrobial activity of sponges extracts from Pasir Putih, East Java (Indonesia). J Marine Sci Res Dev. 2017; 7(5): 1-5. Doi: 10.4172/2155-9910.1000237

Kuntari Z, Sumpono S, Nurhamidah N. Antioxidant activity of secondary metabolite from endofit bacteria of Moringa oleifera L. (kelor) roots. Alotrop. 2017;1(2): 1-5. Doi: 10.33369/atp.v1i2.3483

Sulistiyani S, Ardyati T, Winarsih S. Antimicrobial and antioxidant activity of endophyte bacteria associated with Curcuma longa rhizome. J Exp Life Sci. 2016; 6 (1): 45-51. Doi: 10.21776/ub.jels.2016.006.01.11

Fitri L, Fauziah F, Dini F, Ayu Mauludin S, Farach Dita S. The potential of tapak dara (Catharanthus roseus) leaves endophytic bacteria BETD5 as antioxidant and anticancer against T47D breast cancer cells. Indonesian J. Pharm. 2023; 34(2): 245-252. Doi: 10.22146/ijp.5667

Alkahtani MDF, Fouda A, Attia KA, Al-Otaibi F, Eid AM, Ewais EED, Hijri M, St-Arnaud M, Hassan SED, Khan N, Hafez YM, Abdelaal KAA. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy. 2020; 10(9): 1325. Doi: 10.3390/agronomy10091325

Gultom ES, Hasruddin H, Wasni NZ. Exploration of endophytic bacteria in FIGS (Ficus carica L.) with antibacterial agent potential. Trop J Nat Prod Res. 2023; 7(7): 3342-3350. Doi:10.26538/tjnpr/v7i7.10

Singh AK, Sharma RK, Sharma V, Singh T, Kumar R, Kumari D. Isolation, morphological identification and in vitro antibacterial activity of endophytic bacteria isolated from Azadirachta indica (neem) leaves. Vet World. 2017; 10(5): 510-516. Doi: 10.14202/vetworld.2017.510-516

Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019; 221: 36-49. Doi: 10.1016/j.micres.2019.02.001

Brenner DJ, Krieg NR, Staley JT. Bergey's Manual of Systematic Bacteriology: Volume Two: The Proteobacteria (Part C). New York: Springer; 2005. 1388 p.

Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Whitman WB. Bergey's Manual Of Systematic Bacteriology: Volume 3: The Firmicutes (Vol. 3). New York: Springer; 2009. 1450 p.

Mao Z, Zhang W, Wu C, Feng H, Peng Y, Shahid H, Cui Z, Ding P, Shan T. Diversity and antibacterial activity of fungal endophytes from Eucalyptus exserta. BMC microbiol. 2021; 21(1): 155. Doi: 10.1186/s12866-021-02229-8

Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020; 25(6): 1340. Doi: 10.3390/molecules25061340

Anggreni NG, Fadhil N, Prasasty VD. Potential in vitro and in vivo antioxidant activities from Piper crocatum and Persea americana leaf extracts. Biomed. Pharmacol. J. 2019; 12(2): 661-667. Doi: 10.13005/bpj/1686

Foti MC. Use and abuse of the DPPH• Radical. J. Agric. Food Chem. 2015; 63(40): 8765–8776. Doi: 10.1021/acs.jafc.5b03839

Yuniarti R, Nadia S, Alamanda A, Zubir M, Syahputra RA, Nizam M. Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (Mitragyna speciosa Korth) using DPPH method. J. Phys.: Conf. Ser. 2020; 1462(1): 1-8. Doi:1088/1742-6596/1462/1/012026

Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019; 10(1): 1-11. Doi: 10.1038/s41467-019-13036-1

Ma J, Tang JY, Wang S, Chen ZL, Li XD, Li YH. Illumina sequencing of bacterial 16S rDNA and 16S rRNA reveals seasonal and species-specific variation in bacterial communities in four moss species. Appl Microbiol Biotechnol. 2017; 101: 6739-6753. Doi: 10.1007/s00253-017-8391-5

Kotowicz N, Bhardwaj RK, Ferreira WT, Hong HA, Olender A, Ramirez J, Cutting SM. Safety and probiotic evaluation of two Bacillus strains producing antioxidant compounds. Benef Microbes. 2019; 10(7): 759–771. Doi: 10.3920/BM2019.0040

Zhao W, Zhang J, Jiang YY, Zhao X, Hao XN, Li L, Yang ZN. Characterization and antioxidant activity of the exopolysaccharide produced by Bacillus amyloliquefaciens GSBa-1.2018. J. Microbiol. Biotechnol. 2018; 28(8): 1282-1292. Doi: 10.4014/jmb.1801.01012

Downloads

Published

2024-03-30

How to Cite

Fariska, A., Fitri, L., Ismail, Y. S., & Dita, S. F. (2024). The Antibacterial and Antioxidant Activities of Endophytic Bacteria from Cassava Leaves (<i>Manihot esculenta</i> Crantz). Tropical Journal of Natural Product Research (TJNPR), 8(3), 6617–6623. https://doi.org/10.26538/tjnpr/v8i3.21