The Effect of Sub-Inhibitory Concentration of Clove Essential Oil on the Expression of Pseudomonas aeruginosa Virulence genes

Authors

  • Fatimah A. Awad Department of Basic Sciences, College of Dentistry, University of Anbar, Ramadi, Iraq.
  • Mohammed R. Mohaisen Department of Basic Sciences, College of Dentistry, University of Anbar, Ramadi, Iraq.
  • Karama T. A. Al-Taee Department of Basic Sciences, College of Dentistry, University of Anbar, Ramadi, Iraq.

DOI:

https://doi.org/10.26538/tjnpr/v8i3.4

Keywords:

Essential oil, Virulence Genes, Wound infections, Pseudomonas aeruginosa, Clove oil

Abstract

Clove essential oil (CEO) has been reported to be used in the treatment of bacterial, fungal, and yeast infections. It has also been reported to have positive impact on the virulence factors in some pathogenic bacteria. This study aims to investigate the growth inhibitory activity of CEO against Pseudomonas aeruginosa and its effect on the expression of key virulence genes for biofilm formation and protease production. The antibacterial activity in respect to the minimum inhibitory concentration (MIC) of clove oil against six multidrug-resistant Pseudomonas aeruginosa strains was evaluated using the broth dilution method. The cytotoxic, protease production, and biofilm inhibitory effects of CEO were evaluated following standard protocols. The effect of the oil at sub-MIC concentrations on the expression of the virulence genes; aprA and pelF was evaluated by Real-Time Polymerase Chain Reduction (RT-PCR) technique. Treatment with CEO resulted in a significant inhibition of biofilm formation and protease production in Pseudomonas aeruginosa. RT-PCR analysis showed a reduction in the expression of the two virulence genes; pelF and aprA. These findings suggest a potential for the use of CEO as alternative antibacterial
agent for the treatment of infections due to multidrug-resistant Pseudomonas aeruginosa.

Author Biography

Mohammed R. Mohaisen, Department of Basic Sciences, College of Dentistry, University of Anbar, Ramadi, Iraq.

Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7TX, United Kingdom

References

Korotetskiy IS, Shilov SV, Kuznetsova T, Kerimzhanova B, Korotetskaya N, Ivanova L, Zubenko N, Parenova R, Reva ON. Analysis of Whole-Genome Sequences of Pathogenic Gram-Positive and Gram-Negative Isolates from the Same Hospital Environment to Investigate Common Evolutionary Trends Associated with Horizontal Gene Exchange,

Mutations and DNA Methylation Patterning. Microorganisms. 2023; 11(2):323.

Cobb LM, Mychaleckyj JC, Wozniak DJ, López-Boado YS. Pseudomonas aeruginosa flagellin and alginate elicit very distinct gene expression patterns in airway epithelial cells: implications for cystic fibrosis disease. J Immunol. 2004; 173(9):5659-5670.

Pel MJ, van Dijken AJ, Bardoel BW, Seidl MF, Van der Ent S, Van Strijp JA, Pieterse CM. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Mol Plant Microbe Interact. 2014; 27(7):603-610.

Khan MAS, Nahid ZI, Miah MI, Rahman SR. Draft genome analysis of a multidrug-resistant Pseudomonas aeruginosaCMPL223 from hospital wastewater in Dhaka, Bangladesh.

J Glob Antimicrob Resist. 2022; 30:237-240.

Hall KM, Pursell ZF, Morici LA. The role of the Pseudomonas aeruginosa hypermutator phenotype on the shift from acute to chronic virulence during respiratory

infection. Front Cell Infect Microbiol. 2022; 12:943346.

Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Resp Crit Care Med. 2005; 171(11):1209-

Jaloux C, Amatore F, Macagno N, Morand A, Casanova D. Response to "Burn wound infections and Pseudomonas aeruginosa". Burns. 2021; 47(1):255-256.

Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes. 2020; 13(1):27.

Balabanova L, Shkryl Y, Slepchenko L, Cheraneva D, Podvolotskaya A, Bakunina I, Nedashkovskaya O, Son O, Tekutyeva L. Genomic Features of a FoodDerived Pseudomonas aeruginosa Strain PAEM and Biofilm-Associated Gene Expression under a Marine Bacterial α-Galactosidase.. Int J Mol Sci. 2020; 21(20):7666.

Kašparová P, Vaňková E, Paldrychová M, Svobodová A, Hadravová R, Jarošová KI, Masák J, Scholtz V. Non-thermal plasma causes Pseudomonas aeruginosa biofilm release to planktonic form and inhibits production of Las-B elastase, protease and pyocyanin. Front Cell Infect Microbiol. 2022; 12:993029.

Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;

(1):7-11.

Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet. 2001; 35:439-468.

Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, GarcíaContreras R. Role of quorum sensing in bacterial infections. World J Clin Cases. Jul 16 2015; 3(7):575-598.

Pesci EC, Pearson JP, Seed PC, Iglewski BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 1997; 179(10):3127-3132.

Bardoel BW, van Kessel KP, van Strijp JA, Milder FJ. Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA-AprI interface and species

selectivity. J Mol Biol. 20 2012; 415(3):573-583.

Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev

; 47(6):fuad060.

Ghafoor A, Jordens Z, Rehm BH. Role of PelF in pel polysaccharide biosynthesis in Pseudomonas aeruginosa.Appl Environ Microbiol. 2013; 79(9):2968-2978.

Rajabi H, Salimizand H, Khodabandehloo M, Fayyazi A, Ramazanzadeh R. Prevalence of algD, pslD, pelF, Ppgl,and PAPI-1Genes Involved in Biofilm Formation in

Clinical Pseudomonas aeruginosa Strains. Biomed Res Int.2022; 2022:1716087.

Serra-Burriel M, Keys M, Campillo-Artero C, Agodi A, Barchitta M, Gikas A, Palos C, López-Casasnovas G. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS One. 2020; 15(1):e0227139.

Saiman L, Mehar F, Niu WW, Neu HC, Shaw KJ, Miller G, Prince A. Antibiotic susceptibility of multiply resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis, including candidates for transplantation. Clin Infect Dis. 1996;23(3):532-537.

Carmeli Y, Troillet N, Karchmer AW, Samore MH. Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. Arch Intern Med. 1999;

(10):1127-1132.

Batiha GE, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomol.2020; 10(2):202.

Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and

Future Perspectives. Microorg. 2021; 9(10):2041.

Álvarez-Martínez FJ, Barrajón-Catalán E, Herranz-López M, Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine. 2021; 90:153626.

Wang X, Shen Y, Thakur K, Han J, Zhang JG, Hu F, Wei ZJ. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules. 2020; 25(17):3955.

Adedayo BC, Adebayo AA, Oboh G. In Vitro Antioxidant and Anti-Cholinesterase Properties of Essential Oils from Pepper Fruits (Dennettia Tripetala G. Baker). Trop J Nat Prod Res. 2020; 4:596-600.

Guerrouj BE, Taibi M, Elbouzidi A, Bouhassoun S, Loukili EH, Moubchir T, Haddou M, Hammouti Y, Khoulati A, Addi M. The Effect of Altitude on the Chemical Composition, Antioxidant and Antimicrobial Activities of Eucalyptus globulus Labill. Essential Oils. Trop J Nat Prod Res. 2023; 7:5279–5285.

Husain FM, Ahmad I, Asif M, Tahseen Q. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas

hydrophila. J Biosci. 2013; 38(5):835-844.

Wei MC, Xiao J, Yang YC. Extraction of α-humuleneenriched oil from clove using ultrasound-assisted supercritical carbon dioxide extraction and studies of its fictitious solubility. Food Chem. 2016; 210:172-181.

Hesham HA. Rassem AHN, Rosli MY. Techniques For Extraction of Essential Oils From Plants: A Review. Aust J Basic Appl Sci. 2016; 16(10):117-127.

Laghaei P, Hashemi FB, Irajian G, Korpi F, Amirmozafari N, Behrouz B. Immunogenicity and protective efficacy of Pseudomonas aeruginosa type a and b flagellin vaccines in a burned mouse model. Mol Immunol. 06 2016; 74:71-81.

Behrouz B, Mahdavi M, Amirmozafari N, Fatemi MJ, Bahroudi M, Hashemi FB. Immunogenicity of Pseudomonas aeruginosa recombinant b-type fagellin as a vaccine

candidate: Protective efficacy in a murine burn wound sepsis model. Burns. 2016; S0305-4179(16)30028-6.

Xian-guo He UM, Heinz G. Floss , Armando Cáceres , Lidia Girón , Helen Buckley , Gerard Cooney , Joanne Manns Bary W. Wilson. An antifungal compound

from Solanum nigrescens. J Ethnopharmacol. 1994; 43(3):173-177.

Vijayaraghavan P. PVSG. A simple method for the detection of protease activity on agar plates using bromocresolgreen dye. J Biochem Tech. 2013; 4(3):628-630.

Boddey JA, Flegg CP, Day CJ, Beacham IR, Peak IR. Temperature-regulated microcolony formation by Burkholderia pseudomallei requires pilA and enhances

association with cultured human cells. Infect Immunol. 2006; 74(9):5374-5381.

Schmittgen TD and Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008; 3(6):1101-1108.

Oussalah M, Caillet S, Saucier L, Lacroix M. Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Sci.2006; 73(2):236-244.

Mayaud L, Carricajo A, Zhiri A, Aubert G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett Appl Microbiol. 2008; 47(3):167-173.

Lucchesi ME, Chemat F, Smadja J. Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J Chromatogr A. 2004; 1043(2):323-327.

Dušan F, Marián S, Katarína D, Dobroslava B. Essential oils--their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol In Vitro. 2006; 20(8):1435-1445.

Cortés-Rojas DF, de Souza CR, Oliveira WP. Clove (Syzygium aromaticum): a precious spice. Asian Pac J Trop Biomed. 2014; 4(2):90-96.

Freires IA, Denny C, Benso B, de Alencar SM, Rosalen PL. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules. 2015; 20(4):7329-7358.

Hu Q, Zhou M, Wei S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J Food Sci. 2018; 83(6):1476-1483.

Vanin AB, Orlando T, Piazza SP, Puton BMS, Cansian RL, Oliveira D, Paroul N. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification. Appl Biochem Biotechnol.2014; 174(4):1286-1298.

Islamieh DI, Afshar D, Esmaeili D. Effect of Satureja khuzistanica essential oil (SKEO) extract on expression of lasA and lasB genes in Pseudomonas aeruginosa. Iran J Microbiol. 2019; 11(1):55-59.

Chen X, Yang H, Li C, Hu W, Cui H, Lin L. Enhancing the targeting performance and prolonging the antibacterial effects of clove essential oil liposomes to Campylobacter jejuni by antibody modification. Food Res Int. 2023; 167:112736.

Alibi S, Selma WB, Mansour HB, Navas J. Activity of Essential Oils Against Multidrug-Resistant Salmonella enteritidis. Curr Microbiol. 2022; 79(9):273.

Jayalekshmi H, Omanakuttan A, Pandurangan N, Vargis VS, Maneesh M, Nair BG, Kumar GB. Clove bud oil reduces kynurenine and inhibits pqs A gene expression in P. aeruginosa. Appl Microbiol Biotechnol. 2016; 100(8):3681-3692.

Downloads

Published

2024-03-30

How to Cite

Awad, F. A., Mohaisen, M. R., & Al-Taee, K. T. A. (2024). The Effect of Sub-Inhibitory Concentration of Clove Essential Oil on the Expression of Pseudomonas aeruginosa Virulence genes. Tropical Journal of Natural Product Research (TJNPR), 8(3), 6498–6502. https://doi.org/10.26538/tjnpr/v8i3.4