Crab Ash Extract has Anti-Proliferative Effects on SK-MEL-28 Melanoma Cells and Induces a Cellular Stress Response and Metabolic Changes

https://www. doi.org/10.26538/tjnpr/v3i4.3

Authors

  • Hedeel M. Katran School of Pharmacy and Biomedical Science, Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley WA, Australia
  • Brian Brestovac School of Pharmacy and Biomedical Science, Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley WA, Australia
  • Danielle E. Dye School of Pharmacy and Biomedical Science, Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley WA, Australia

Keywords:

cellular stress, mass spectrometry, apoptosis, crab extract, Melanoma

Abstract

The incidence of metastatic melanoma continues to rise worldwide and although there has been recent advances in treatment, outcomes remain poor for many patients. Therefore, there remains a need for novel treatments. Recently, in vitro studies have shown that some compounds derived from crab shell or hemolymph may have anticancer properties. Furthermore, whole crab ash has been recorded as a traditional folk medication used to treat solid tumours. This study examined the anticancer properties of extracts derived from the crab genus Portunus. The SK-MEL-28 melanoma cell line was treated with ethanol and aqueous extracts derived from whole crab ash (CA), shell, or muscle fibres. Concentrations tested were from 312.5 µg/mL to 5000 µg/mL. CA ethanol extract showed the highest amount of cell death, with 100% cell death observed at 2500 µg/mL and 50% cell death at 1250 µg/mL. Cells that survived CA treatment showed altered morphology and intracellular granulation. Next, lysates of melanoma cells treated with a sub-lethal concentration (750 µg/mL) of ethanolic CA were analysed by semi-quantitative mass spectrometry. This revealed upregulation of proteins associated with protein synthesis, folding and degradation, ER chaperones, carbohydrate and lipid metabolism, cytoskeletal and some nuclear proteins. Taken together, the proteomic data suggest activation of cellular stress pathways and changes in metabolism. 

References

Al-Shammari A, Yaseen N, Al-Alwaji S, Raad K, Dawood SS. Cytotoxic effect of crab shell extracts on different tumor cell lines. QMJ. 2012; 8(14): 151-162.

Moosavi J. The Place of Avicenna in the History of Medicine. AJMB. 2009; 1(1):3-8.

Emami S, Sahebkar A, Tayarani-Najaran N, Tayarani-Najaran Z. Cancer and its Treatment in Main Ancient Books of Islamic Iranian Traditional Medicine (7th to 14th Century AD). IRCMJ. 2012; 14(12): 747-757.

Azuma K, Osaki T, Minami S, Okamoto Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater. 2015; 6(1):33-49.

Doyen A, Beaulieu L, Saucier L, Pouliot Y, Bazinet L. Demonstration of in vitro anticancer properties of peptide fractions from a snow crab by-products hydrolysate after separation by electrodialysis with ultrafiltration membranes. Sep Purif Technol. 2011; 78(3): 321-329.

Priya ER, Ravichandran S. Anti Cancer Compounds of Calappa calappa. Int J Zoo Res. 2015; 11:107-111.

Rezakhani L, Rashidi Z, Mirzapur P, Khazaei M. Antiproliferatory Effects of Crab Shell Extract on Breast Cancer Cell Line (MCF7). J Breast Cancer. 2014; 17(3):219-225.

Rezakhani L, Khazaei MR, Ghanbari A, Khazaei M. Crab Shell Extract Induces Prostate Cancer Cell Line (LNcap) Apoptosis and Decreases Nitric Oxide Secretion. Cell J. 2017; 19(2):231-237.

Priya ER and Ravichandran S. Anti-Cancer Activity of Brachyuran Crab Dromia dehaani. Asian J Biotech. 2015; 7:119-128.

Poore GCB. Marine Decapod Crustacea of Southern Australia: A Guide to Identification. Australia: Csiro Publishing; 2004. 574 p.

Mycroft-West CJ, Cooper LC, Devlin AJ, Procter P, Guimond SE, Guerrini M, Fernig D, Lima MA, Yates EA, Skidmore MA. A glycosaminoglycan extract from Portunus pelagicus inhibits BACE1, the β secretase implicated in Alzheimer’s disease. bioRxiv. 2019: 613695.

Cancer Today: International Agency for Research on Cancer; 2019 [Available from: http://gco.iarc.fr/today/home].

Matthews N, Li W, Qureshi A, Weinstock M, Cho E. Epidemiology of Melanoma. 2017. In: Cutaneous Melanoma: Etiology and Therapy [Internet]. Brisbane: Codon Publicatoins. Available from: https://www.ncbi.nlm.nih.gov/books/NBK481862/.

Melanoma of the skin statistics. Australia: Cancer Australia; 2019.

Eggermont AM and Kirkwood JM. Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer. 2004; 40(12):1825-1836.

Lee CS, Thomas CM, Ng KE. An Overview of the Changing Landscape of Treatment for Advanced Melanoma. Pharmacother. 2017; 37(3):319-333.

Abdul-Sahib IM. Some biological aspects of the swimming crab Portunus pelagicus (Linnaeus, 1766) (Decapoda: Portunidae) in NW Arabian Gulf. Mesopot J Mar Sci. 2012; 27(2):78-87.

Al-Ghais SM and Cooper RT. Brachyura (Grapsidae, Ocypodidae, Portunidae, Xanthidae and Leucosiidae) of Umm Al Quwain mangal, United Arab Emirates. Trop Zool. 1996; 9(2):409-430.

Crocetta F. First record of Portunus pelagicus (Linnaeus, 1758) (Decapoda, Brachyura, Portunidae) in the northern Tyrrhenian Sea. 2006. 1145-1148 p.

Lai JCY, Ng PKL, Davie P. A revision of the Portunus pelagicus(Linnaeus, 1758) species complex (Crustacea: Brachyura: Portunidae), with the recognition of four species. The Raffles Bull Zool. 2017; 58(2):199-237.

Lechuga-Devezé C, Ortega-Rubio A, Arreola-Lizárraga J, Hernández-Moreno L, Flores-Verdugo F, Hernández-Vázquez S. Ecology of Callinectes arcuatus and C. bellicosus (Decapoda, Portunidae) in a coastal lagoon of northwest Mexico. Crustaceana. 2003; 76(6): 651-664.

Ng's PKL, Guinot D, Davie PJF. Systema Brachyurorum: part I. an annotated checklist of extant Brachyuran crabs of the world. Mesopot J Mar Sci. 2008; 17: 1-286.

Rathbun MJ. The Cancroid Crabs of America of the Families Euryalidae, Portunidae, Atelecyclidae, Cancridae, and Xanthidae: Bulletin of the United States National Museum, (152): i-xvi, 1-609, 85 figs, 230 pls; 1930.

Stephenson W, Campbell B. The Australian Portunids (Crustacea: Portunidae). IV. Remaining Genera. Mar Fresh Res. 1960; 11(1):73-122.

Vannini M, Innocenti G. Research on the coast of Somalia. Portunidae (Crustacea Brachyura). Trop Zool. 2000; 13(2):251-298.

Brestovac B, Snook J, Ellison G, Phillips A, Townsend D. Sarcostemma viminale: A potential anticancer therapy. Comp Clin Pathol. 2015; 24(1): 9-17.

Ravindra PV, Tiwari AK, Ratta B, Chaturvedi U, Palia SK, Chauhan RS. Newcastle disease virus-induced cytopathic effect in infected cells is caused by apoptosis. Virus Res. 2009; 141(1):13-20.

Kapuscinski J. DAPI: a DNA-specific fluorescent probe. Biotechnic & histochemistry : official publication of the Biological Stain Commission. 1995; 70(5):220-233.

Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57.

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucl Acids Res. 2017; 45(D1): D362-d8.

Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell. 2010; 40(2):238-252.

Castagna A, Antonioli P, Astner H, Hamdan M, Righetti SC, Perego P, et al. A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431. Proteomics. 2004; 4(10):3246-3267.

Di Michele M, Della Corte A, Cicchillitti L, Del Boccio P, Urbani A, Ferlini C, et al. A proteomic approach to paclitaxel chemoresistance in ovarian cancer cell lines. Biochim Biophys Acta. 2009; 1794(2):225-236.

Sun S, Lee D, Ho AS, Pu JK, Zhang XQ, Lee NP, et al. Inhibition of prolyl 4-hydroxylase, beta polypeptide (P4HB) attenuates temozolomide resistance in malignant glioma via the endoplasmic reticulum stress response (ERSR) pathways. Neuro Oncol. 2013; 15(5):562-577.

Fujioka H, Sakai A, Tanaka S, Kimura K, Miyamoto A, Iwamoto M, et al. Comparative proteomic analysis of paclitaxel resistance-related proteins in human breast cancer cell lines. Oncol Lett. 2017; 13(1):289-295.

Khosravi S, Wong RP, Ardekani GS, Zhang G, Martinka M, Ong CJ, et al. Role of EIF5A2, a downstream target of Akt, in promoting melanoma cell invasion. Br J Cancer. 2014; 110(2):399-408.

Suzuki A, Iizuka A, Komiyama M, Takikawa M, Kume A, Tais S et al. Identification of Melanoma Antigens Using a Serological Proteome Approach (SERPA). Canc Gen Proteom 2010; 7(1):17-23.

Sinha P, Kohl S, Fischer J, Hütter G, Kern M, Köttgen E, et al. Identification of novel proteins associated with the development of

chemoresistance in malignant melanoma using two-dimensional electrophoresis. Electrophoresis. 2000; 21(14):3048-3057.

Kardos GR and Robertson GP. Therapeutic interventions to disrupt the protein synthetic machinery in melanoma. Pig Cell Mel Res. 2015; 28(5):501-519.

Kato Y, Maeda T, Suzuki A, Baba Y. Cancer metabolism: New insights into classic characteristics. The Jap Dent Sci Rev. 2018; 54(1):8-21.

Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Br J Pharmacol. 2016; 173(6):970-979.

Epstein T, Gatenby RA, Brown JS. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PloS one. 2017; 12(9): e0185085-e.

Qian X, Xu W, Xu J, Shi Q, Li J, Weng Y, Jiang Z, Feng L, Wang X, Zhou J, Jin H. Enolase 1 stimulates glycolysis to promote chemoresistance in gastric cancer. Oncotarget. 2017; 8(29): 47691-47708.

Capello M, Ferri-Borgogno S, Riganti C, Chattaragada MS, Principe M, Roux C, et al. Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest. Oncotarget. 2015; 7(5):5598-5612.

Wang T, Ning K, Sun X, Zhang C, Jin L-F, Hua D. Glycolysis is essential for chemoresistance induced by transient receptor potential channel C5 in colorectal cancer. BMC Cancer. 2018; 18(1):207.

Longley D and Johnston P. Molecular mechanisms of drug resistance. J Pathol. 2005; 205(2):275-292.

Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, Chacinska A, Darshi M, Deckers M, Hoppins S, Icho T, Jakobs S, Ji J, Kozjak-Pavlovic V, Meisinger C, Odgren P, Park SK, Rehling P, Reichert AS, Sheikh MS, Taylor SS, Tsuchida N, van der Bliek AM, van der Klei IJ, Weissman JS, Westermann B, Zha J, Neupert W, Nunnari, J. Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J Cell Biol. 2014; 204(7):1083.

Koll H, Guiard B, Rassow J, Ostermann J, Horwich AL, Neupert W, et al. Antifolding activity of HSP60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell. 1992; 68(6):1163-1175.

Ganesan S. MYC, PARP1, and Chemoresistance: BIN There, Done That? Sci Signal. 2011; 4(166):pe15.

Song L, Robson T, Doig T, Brenn T, Mathers M, Brown ER, Doherty V, Bartlett JM, Anderson N, Melton DW. DNA repair and replication proteins as prognostic markers in melanoma. Histopathol. 2013; 62(2):343-350.

Korabiowska M, Tscherny M, Stachura J, Berger H, Cordon-Cardo C, Brinck U. Differential Expression of DNA Nonhomologous End-Joining Proteins Ku70 and Ku80 in Melanoma Progression. Mod Pathol. 2002; 15:426.

Box JK, Paquet N, Adams MN, Boucher D, Bolderson E, O’Byrne KJ, et al. Nucleophosmin: from structure and function to disease development. 2016; 17(1):19.

Zhang S, Qin F, Yang L, Xian J, Zou Q, Jin H, et al. Nucleophosmin Mutations Induce Chemosensitivity in THP-1 Leukemia Cells by Suppressing NF-κB Activity and Regulating Bax/Bcl-2 Expression. J Cancer 2016; 7(15):2270-2279.

Chen S, Meng T, Zheng X, Cai J, Zhang W, You H, et al. Contribution of nucleophosmin overexpression to multidrug resistance in breast carcinoma. J Drug Target. 2018; 26(1):27-35.

Marzese DM, Liu M, Huynh JL, Hirose H, Donovan NC, Huynh KT, et al. Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome. Pig Cell Mel Res. 2015; 28(1):82-93.

He X, Arslan AD, Ho TT, Yuan C, Stampfer MR, Beck WT. Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis. 2014; 3:e84.

Zhou ZJ, Dai Z, Zhou SL, Fu XT, Zhao YM, Shi YH, et al. Overexpression of HnRNP A1 promotes tumor invasion through regulating CD44v6 and indicates poor prognosis for hepatocellular carcinoma. Int J Cancer. 2013; 132(5):1080-1089.

Desouza M, Gunning P, Stehn J. The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitect. 2012; 2(3):75-87.

Parker AL, Teo WS, McCarroll JA, Kavallaris M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci. 2017; 18(7):1434.

Jordan MA and Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004; 4:253.

Wang Z, Chen J, Wang J, Ahn S, Li C-M, Lu Y, et al. Novel tubulin polymerization inhibitors overcome multidrug resistance and reduce melanoma lung metastasis. Pharmaceutical Res. 2012; 29(11): 3040-52.

Sheppard HM, Feisst V, Chen J, Print C, Dunbar PR. AHNAK is downregulated in melanoma, predicts poor outcome, and may be required for the expression of functional cadherin-1. Mel Res. 2016; 26(2):108-116.

Hedman AC, Smith JM, Sacks DB. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO reports. 2015; 16(4):427-446.

Pan CW, Jin X, Zhao Y, Pan Y, Yang J, Karnes RJ, Zhang J, Wang L, Huang H. AKT-phosphorylated FOXO1 suppresses ERK activation and chemoresistance by disrupting IQGAP1-MAPK interaction. EMBO J. 2017; 36(8):995-1010.

Downloads

Published

2019-04-01

How to Cite

Katran, H. M., Brestovac, B., & Dye, D. E. (2019). Crab Ash Extract has Anti-Proliferative Effects on SK-MEL-28 Melanoma Cells and Induces a Cellular Stress Response and Metabolic Changes: https://www. doi.org/10.26538/tjnpr/v3i4.3. Tropical Journal of Natural Product Research (TJNPR), 3(4), 113–123. Retrieved from https://www.tjnpr.org/index.php/home/article/view/3331