Medicinal Plants and Natural-Derived Compounds for Smoking Cessation: Is There a Real Potential?

http://www.doi.org/10.26538/tjnpr/v6i9.1

Authors

  • Poh K. Wong Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
  • Syaratul D. Yusoff Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
  • Norsyahida Mohd Fauzi Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
  • Nor S. Yaakob Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.

Keywords:

Smoking, Phytotherapy, Nicotine, Natural product

Abstract

Nicotine use disorders, which are typically acquired through tobacco smoking, are a global problem and a leading cause of preventable deaths. Unfortunately, the available therapies intended for tobacco smoking cessation have varying efficacy among smokers in addition to some adverse effects observed. These factors, alongside the cost of such therapies deemed as a financial burden by some, contribute to the failure to meet patients‟ needs. This necessitates the many studies being conducted on the possible use of natural products in the treatment of nicotine use disorders to address such issues. Therefore, this review aims to discuss published data
documenting the effects of plant extracts and bioactive compounds on nicotine-induced reactions and nicotine use disorders by looking into the different effects, possible mechanisms, and the putative targets of these selected natural products. A total of 21 natural products and bioactive compounds were obtained from searches across PubMed, Ovid Medline and Scopus databases which comprised of studies performed in vitro and in vivo as well as human trials. These data suggest that these natural products may have the potential to be utilized to treat nicotine use disorders. Undoubtedly, more detailed studies are still required to resolve conflicting or inconclusive outcomes from these investigations before clinical use is warranted. 

References

Li Y and Hecht SS. Carcinogenic components of tobacco and tobacco smoke: A 2022 update. Food Chem Toxicol. 2022;

:113179.

Cooke M. The chemical components of tobacco and tobacco smoke. Chromatographia. 2010; 71(9):977.

Tiwari RK and Sharma V, Pandey RK, Shukla SS. Nicotine addiction: neurobiology and mechanism. J Pharmacopuncture. 2020; 23(1):1-7.

Picciotto MR and Kenny PJ. Mechanisms of nicotine addiction. Cold Spring Harb Perspect Med. 2021; 11(5):1-15.

Mishra A, Chaturvedi P, Datta S, Sinukumar S, Joshi P, Garg A. Harmful effects of nicotine. Indian J Med Paediatr Oncol. 2015; 36(1):24-31.

Mahmoud AA, Abdel-Aziz HO, Elbadr M, Elbadre H. Effect of nicotine on STAT1 pathway and oxidative stress in rat lungs. Rep Biochem Mol Biol. 2021; 10(3):429-436.

Tyagi A, Sharma S, Wu K, Wu SY, Xing F, Liu Y, Zhao D, Deshpande RP, D'Agostino RB Jr, & Watabe K. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun. 2021; 12(1):474.

Hecht SS, Stepanov I, Carmella SG. Exposure and metabolic activation biomarkers of carcinogenic tobacco-specific nitrosamines. Acc Chem Res. 2016; 49(1):106-114.

Osman K, Mohamed RP, Omar MH, Ibrahim SF, Hashim N. Effect of workstress and smoking towards sperm quality among infertile male. Malay J Pub Health Med. 2018; Special Volume (1):33-40.

Mohamed N, Muhammad N, Shuid AN, Soelaiman IN. The role of dietary compounds in the therapy of nicotine-induced osteoporosis. Curr Drug Targ. 2018; 19(12):1424-1430.

Budin SB, Kho JH, Lee JH, Ramalingam A, Jubaidi FF, Latif ES, Zainalabidin S, Taib IS, & Mohamed J. Low-dose nicotine exposure induced the oxidative damage of reproductive organs and altered the sperm characteristics of adolescent male rats. Malay J Med Sci. 2017; 24(6):50-57.

Golechha M. Health promotion methods for smoking prevention and cessation: a comprehensive review of effectiveness and the way forward. Int J Prev Med. 2016; 7:7.

Ismail R, Syed Aljunid SMA, Latip KA, Puteh SEW. Effectiveness of group counseling in smoking cessation program amongst adolescent smokers in Malaysia. Med J Indones. 2010; 19(4):273-279.

Maarof MF, Ali AM, Amit N, Bakry MM, Taha NA. Suitability of a group behavioural therapy module for workplace smoking cessation programs in Malaysia: A pilot study. Asian Pac J Cancer Prev. 2016; 17(1):207-214.

Tohid H, Omar K, Muhammad NA, Jaffar A, Md Monoto EM, Mohd Ishak N. Smoking is worth the risk: Understanding adolescents' rationalisation of their smoking behaviour. Pertanika J Soc Sci Hum. 2016; 24(2):573-585.

Prochaska JJ and Benowitz NL. Current advances in research in treatment and recovery: Nicotine addiction. Sci Adv. 2019; 5(10):eaay9763.

Casella G, Caponnetto P, Polosa R. Therapeutic advances in the treatment of nicotine addiction: present and future. Ther Adv Chron Dis. 2010; 1(3):95-106.

Grace R, Vaz J, Da Costa J. Traditional medicine use in Timor-Leste. BMC Complement Med Ther. 2020; 20(1):165.

Lee EL, Harrison J, Barnes J. Mapping prevalence and patterns of use of, and expenditure on, traditional, complementary and alternative medicine in New Zealand: a scoping review of qualitative and quantitative studies. N Z Med J. 2021; 134(1541):57-74.

Oyebode O, Kandala NB, Chilton PJ, Lilford RJ. Use of traditional medicine in middle-income countries: a WHOSAGE study. Health Policy Plan. 2016; 31(8):984-991.

Tengku Mohamad TAS, Islahudin F, Jasamai M, Jamal JA. Preference, perception and predictors of herbal medicine use among Malay women in Malaysia. Patient Prefer Adherence. 2019; 13:1829-1837.

Talib WH and Al Kury LT. Parthenolide inhibits tumorpromoting effects of nicotine in lung cancer by inducing P53 -dependent apoptosis and inhibiting VEGF expression. Biomed Pharmacother. 2018; 107:1488-1495.

Lina S, Eliza H, Hashida NH, Ibrahim SF, Osman K. Androgen receptor and ultrastructural features of Nigella sativa oil and nicotine-treated male rat reproductive glands. Sains Malay. 2018; 47(8):1827-1833.

Nacerai H, Gregory T, Sihem B, Salah A, Souhila AB. Green tea beverage and epigallocatecihin gallate attenuate nicotine cardiotaoxicity in rat. Acta Pol Pharm. 2017; 74(1):277-287.

Zainalabidin S, Shahidin S, Budin SB. Hibiscus sabdariffa Linn. (Roselle) protects against nicotine-induced heart damage in rats. Sains Malay. 2016; 45(2):207-214.

Máthé Á. Indian Tobacco (Lobelia inflata L.). In: Máthé Á, editor. Medicinal and Aromatic Plants of North America. Cham: Springer International Publishing; 2020; 159-186p.

Lysek N, Rachor E, Lindel T. Isolation and structure elucidation of deformylflustrabromine from the North Sea bryozoan Flustra foliacea. Z Naturforsch C J Biosci. 2002; 57(11-12):1056-1061.

Rahimi Khonakdari M, Mirjalili MH, Gholipour A, Rezadoost H, Moridi Farimani M. Quantification of galantamine in Narcissus tazetta and Galanthus nivalis (Amaryllidaceae) populations growing wild in Iran. Plant Genet Resour. 2018; 16(2):188-192.

Abd-Alla HI, Ibrahim Fouad G, Ahmed KA, Shaker K. Alloimperatorin from Ammi majus fruits mitigates piroxicam-provoked gastric ulcer and hepatorenal toxicity in rats via suppressing oxidative stress and apoptosis. Biomarkers. 2022; 1-16.

Ge L, Cheng K, Han J. A Network Pharmacology Approach for Uncovering the Osteogenic Mechanisms of Psoralea corylifolia Linn. Evid-Based Compl Altern Med. 2019; 2019:2160175.

Kviesis J, Kļimenkovs I, Arbidans L, Podjava A, Kļaviņš M, Liepiņš E. Evaluation of furanocoumarins from seeds of the wild parsnip (Pastinaca sativa L. s.l.). J Chromatogr B Analyt Technol Biomed Life Sci. 2019; 1105:54-66.

Tijero V, Muñoz P, Munné-Bosch S. Melatonin as an inhibitor of sweet cherries ripening in orchard trees. Plant Physiol Biochem. 2019; 140:88-95.

Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge L, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells. 2019; 8(7):681.

Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP, Li HB. Dietary sources and bioactivities of melatonin. Nutr. 2017; 9(4):367.

Juneja K, Beuerle T, Sircar D. Enhanced accumulation of biologically active coumarin and furanocoumarins in callus culture and field-grown plants of Ruta chalepensis through led light-treatment. Photochem Photobiol. 2022; 98: 1100- 1109.

Su Q, Tao W, Wang H, Chen Y, Huang H, Chen G. Umbelliferone attenuates unpredictable chronic mild stress induced-insulin resistance in rats. IUBMB Life. 2016; 68(5):403-409.

Ozek G, Yur S, Goger F, Ozek T, Andjelkovic B, Godjevac D, Sofrenic I, Aneva I, Todorova M, Trendafilova A. Furanocoumarin content, antioxidant activity, and inhibitory potential of Heracleum verticillatum, Heracleum sibiricum, Heracleum angustisectum, and Heracleum ternatum extracts against enzymes involved in Alzheimer's disease and type II diabetes. Chem Biodivers. 2019; 16(4):e1800672.

Nalinthutsanai N, Thaichinda S, Sittiprapaporn P, editors. Comparison of Vemonia cinerea and lime in reducing the cigarette cessation. 3rd International Conference on Digital Arts, Media and Technology, ICDAMT 2018; 2018; 313- 316.

Leelarungrayub D, Pratanaphon S, Pothongsunun P, Sriboonreung T, Yankai A, Bloomer RJ. Vernonia cinerea Less. supplementation and strenuous exercise reduce smoking rate: relation to oxidative stress status and betaendorphin release in active smokers. J Int Soc Sports Nutr.

; 7:21.

Wongwiwatthananukit S, Benjanakaskul P, Songsak T, Suwanamajo S, Verachai V. Efficacy of Vernonia cinerea for smoking cessation. J Health Res. 2009; 23(1):31-36.

Chaikoolvatana A, Ayuthaya ND, Suthipinittharm P, Chaikoolvatana C, Saisingh N, Manwong M. Development and evaluation of the effectiveness of Vernonia cinerea (vc) cookies for smoking cessation. Tob Prev Cessation. 2017; 3(May Supplement):45.

Chaikoolvatana A, Thanawirun J, Chaikoolvatana C, Puchcharanapaponthorn P, Suwanakoot P, Saisingha N, Manwong M, Rodchua T. The innovation and use of Vernonia cinerea jelly candies for smoking cessation, Ubon Ratchathani Region, Thailand. Tob Prev Cessation. 2017;

(May Supplement):46.

Ruedeberg C, Wiesmann UN, Brattstroem A, Honegger UE. Hypericum perforatum L. (St John's wort) extract Ze 117 inhibits dopamine re-uptake in rat striatal brain slices. An implication for use in smoking cessation treatment? Phytother Res. 2010; 24(2):249-251.

Camfield DA, Scholey AB, Pipingas A, Silberstein RB, Kure C, Zangara A, Kras M, Stough C. The neurocognitive effects of Hypericum perforatum Special Extract (Ze 117) during smoking cessation. Phytother Res. 2013; 27(11):1605-1613.

Catania MA, Firenzuoli F, Crupi A, Mannucci C, Caputi AP, Calapai G. Hypericum perforatum attenuates nicotine withdrawal signs in mice. Psychopharmacol (Berl). 2003; 169(2):186-189.

Mannucci C, Pieratti A, Firenzuoli F, Caputi AP, Calapai G. Serotonin mediates beneficial effects of Hypericum perforatum on nicotine withdrawal signs. Phytomed. 2007; 14(10):645-651.

Stough C, Scholey A, Kure C, Tarasuik J, Kras M, Zangara A & Camfield D. An open label study investigating the efficacy of Hypericum perforatum special extract (ZE117), nicotine patches and combination (ZE117)/ nicotine patches for smoking cessation. Altern Integr Med. 2013; 2:9.

Sood A, Ebbert JO, Prasad K, Croghan IT, Bauer B, Schroeder DR. A randomized clinical trial of St. John's wort for smoking cessation. J Altern Compl Med. 2010; 16(7):761-767.

Parsons A, Ingram J, Inglis J, Aveyard P, Johnstone E, Brown K, Franklin M, Bermudez I. A proof of concept randomised placebo controlled factorial trial to examine the efficacy of St John's wort for smoking cessation and chromium to prevent weight gain on smoking cessation.

Drug Alcohol Depend. 2009;102(1-3):116-122.

Wen DC, Hu XY, Wang YY, Luo JX, Lin W, Jia LY, Gong XY. Effects of aqueous extracts from Panax ginseng and Hippophae rhamnoides on acute alcohol intoxication: An experimental study using mouse model. J Ethnopharmacol. 2016; 192:67-73.

Kim HS, Kim KS, Oh KW. Ginseng total saponin inhibits nicotine-induced hyperactivity and conditioned place preference in mice. J Ethnopharmacol. 1999; 66(1):83-90.

Kim HS and Kim KS. Inhibitory effects of ginseng total saponin on nicotine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity. Behav Brain Res. 1999; 103(1):55-61.

Shim I, Javaid JI, Kim SE. Effect of ginseng total saponin on extracellular dopamine release elicited by local infusion of nicotine into the striatum of freely moving rats. Planta Med. 2000; 66(8):705-708.

Shim IS, Won JS, Lee JK, Song DK, Kim SE, Huh SO, Kim YH, & Suh HW. Modulatory effect of ginseng total saponin on dopamine release and tyrosine hydroxylase gene expression induced by nicotine in the rat. J Ethnopharmacol. 2000; 70(2):161-169.

Kim SE, Shim I, Chung J-K, Lee MC. Effect of ginseng saponins on enhanced dopaminergic transmission and locomotor hyperactivity induced by nicotine. Neuropsychopharmacol. 2006; 31(8):1714-1721.

Mash DC, Duque L, Page B, Allen-Ferdinand K. Ibogaine detoxification transitions opioid and cocaine abusers between dependence and abstinence: clinical observations and treatment outcomes. Front Pharmacol. 2018; 9:529.

Benwell ME, Holtom PE, Moran RJ, Balfour DJ. Neurochemical and behavioural interactions between ibogaine and nicotine in the rat. Br J Pharmacol. 1996; 117(4):743-749.

Zubaran C, Shoaib M, Stolerman IP. The development and expression of locomotor sensitization to nicotine in the presence of ibogaine. Behav Pharmacol. 2000; 11(5):431- 436.

Chang Q, Hanania T, Mash DC, Maillet EL. Noribogaine reduces nicotine self-administration in rats. J Psychopharmacol. 2015; 29(6):704-711.

Mash DC, Kovera CA, Pablo J, Tyndale RF, Ervin FD, Williams IC, Singleton EG, Mayor M. Ibogaine: complex pharmacokinetics, concerns for safety, and preliminary efficacy measures. Ann N Y Acad Sci. 2000; 914:394-401.

Maisonneuve IM, Mann GL, Deibel CR, Glick SD. Ibogaine and the dopaminergic response to nicotine. Psychopharmacol (Berl). 1997; 129(3):249-256.

Mah SJ, Tang Y, Liauw PE, Nagel JE, Schneider AS. Ibogaine acts at the nicotinic acetylcholine receptor to inhibit catecholamine release. Brain Res. 1998; 797(1):173-180.

Litjens RP and Brunt TM. How toxic is ibogaine? Clin Toxicol (Phila). 2016; 54(4):297-302.

Rubi L, Eckert D, Boehm S, Hilber K, Koenig X. Antiaddiction drug ibogaine prolongs the action potential in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Toxicol. 2017; 17(2):215-218.

Kelly GS. Rhodiola rosea: a possible plant adaptogen. Altern Med Rev. 2001; 6(3):293-302.

Bangratz M, Ait Abdellah S, Berlin A, Blondeau C, Guilbot A, Dubourdeaux M, Lemoine P. A preliminary assessment of a combination of rhodiola and saffron in the management of mild-moderate depression. Neuropsychiatr Dis Treat. 2018; 14:1821-1829.

Amsterdam JD and Panossian AG. Rhodiola rosea L. as a putative botanical antidepressant. Phytomed. 2016; 23(7):770-783.

Ganzera M, Yayla Y, Khan IA. Analysis of the marker compounds of Rhodiola rosea L. (golden root) by reversed phase high performance liquid chromatography. Chem Pharm Bull (Tokyo). 2001; 49(4):465-467.

Titomanlio F, Perfumi M, Mattioli L. Rhodiola rosea L. extract and its active compound salidroside antagonized both induction and reinstatement of nicotine place preference in mice. Psychopharmacol (Berl). 2014; 231(10):2077-2086.

Mattioli L, Perfumi M. Evaluation of Rhodiola rosea L. extract on affective and physical signs of nicotine withdrawal in mice. J Psychopharmacol. 2011; 25(3):402-10.

Mannucci C, Navarra M, Calzavara E, Caputi AP, Calapai G. Serotonin involvement in Rhodiola rosea attenuation of nicotine withdrawal signs in rats. Phytomed. 2012; 19(12):1117-1124.

Kalász H, Ojha S, Tekes K, Szőke É, Mohanraj R, Fahim M, Adeghate E, Adem A. Pharmacognostical sources of popular medicine to treat Alzheimer's disease. Open Med Chem J. 2018; 12:23-35.

de Paiva J, Queiroz A, Pereira R, Riceli P, Zocolo G, Brito E, Pessoa O, Canuto K. Development and validation of a UPLC-ESI-MS method for quantitation of the antiAlzheimer drug galantamine and other Amaryllidaceae alkaloids in plants. J Braz Chem Soc. 2019; 31: 265-272.

Rahimi Khonakdari M, Mirjalili MH, Gholipour A, Rezadoost H, Moridi Farimani M. Quantification of galantamine in Narcissus tazetta and Galanthus nivalis (Amaryllidaceae) populations growing wild in Iran. Plant Genet Resour. 2017; 16:188-192.

de Paiva JR, Souza ASDQ, Pereira RDCA, Ribeiro PRV, Alves Filho EG, e Silva LMA, Zocolo GJ, de Brito ES, Alves DR, de Morais SM. Chemical composition and anticholinesterase activity of cultivated bulbs from Hippeastrum elegans, a potential tropical source of bioactive alkaloids. Phytochem Lett. 2021; 43:27-34.

Park CH, Yeo HJ, Kim YJ, Nguyen BV, Park YE, Sathasivam R, Kim JK, Park SU. Profiles of secondary metabolites (phenolic acids, carotenoids, anthocyanins, and galantamine) and primary metabolites (carbohydrates, amino acids, and organic acids) during flower development in Lycoris radiata. Biomolecules. 2021; 11(2):248.

Sun S, Wei Y, Cao Y, Deng B. Simultaneous electrochemiluminescence determination of galanthamine, homolycorine, lycorenine, and tazettine in Lycoris radiata by capillary electrophoresis with ultrasonic-assisted extraction. J Chromatogr B Analyt Technol Biomed Life Sci. 2017; 1055- 1056:15-19.

Rahimi Khonakdari M, Rezadoost H, Heydari R, Mirjalili MH. Effect of photoperiod and plant growth regulators on in vitro mass bulblet proliferation of Narcissus tazzeta L. (Amaryllidaceae), a potential source of galantamine. Plant Cell Tissue Organ Cult. 2020; 142(1):187-199.

Tsvetkova D, Obreshkova D, Ivanova S, Hadjieva B. Benefits of acethylcholinesterase inhibitor galantamine in treatment of Alzheimer‟s disease and instrumental methods for its analysis in medicinal plants. J Med Pharm Allied Sci. 2016:099-116.

Klosi R, Mersinllari M, Gavani E, editors. Galantamine content in Leucojum aestivum populations grown in northwest Albania. 2016.

Demir SC, Yildirim AB, Turker AU, Eker I. Seasonal variation in alkaloid content, phenolic constituent and biological activities of some Leucojum aestivum L. populations in Turkey. S Afr J Bot. 2022; 147:713-723.

Zhan G, Zhou J, Liu R, Liu T, Guo G, Wang J, Xiang M, Xue Y, Luo Z, Zhang Y, Yao G. Galanthamine, plicamine, and secoplicamine alkaloids from Zephyranthes candida and their anti-acetylcholinesterase and anti-inflammatory activities. J Nat Prod. 2016; 79(4):760-766.

Berkov S, Georgieva L, Kondakova V, Atanassov A, Viladomat F, Bastida J & Codina C. Plant sources of galanthamine: phytochemical and biotechnological aspects. Biotechnol Biotechnol Equip. 2009; 23(2):1170-1176.

Ka S, Koirala M, Mérindol N, Desgagné-Penix I. Biosynthesis and biological activities of newly discovered Amaryllidaceae alkaloids. Molecules. 2020; 25(21):4901.

Vaz M and Silvestre S. Alzheimer's disease: recent treatment strategies. Eur J Pharmacol. 2020; 887:173554.

Birks J. Cholinesterase inhibitors for Alzheimer's disease. The Cochrane database of systematic reviews. 2006; 2006(1):Cd005593.

Sofuoglu M, Md P, Carroll K. Effects of galantamine on cocaine use in chronic cocaine users. Am j addict. 2011; 20(3):302-303.

Liu X. Positive allosteric modulation of α4β2 nicotinic acetylcholine receptors as a new approach to smoking reduction: Evidence from a rat model of nicotine selfadministration. Psychopharmacol (Berl). 2013; 230(2):203- 213.

Hopkins TJ, Rupprecht LE, Hayes MR, Blendy JA, Schmidt HD. Galantamine, an acetylcholinesterase inhibitor and positive allosteric modulator of nicotinic acetylcholine receptors, attenuates nicotine taking and seeking in rats. Neuropsychopharmacol. 2012; 37(10):2310-2321.

Ashare RL, Kimmey BA, Rupprecht LE, Bowers ME, Hayes MR, Schmidt HD. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers. Transl Psychiatr. 2016; 6:e713.

Diehl A, Nakovics H, Croissant B, Smolka MN, Batra A, Mann K. Galantamine reduces smoking in alcohol-dependent patients: a randomized, placebo-controlled trial. Int J Clin Pharmacol Ther. 2006; 44(12):614-622.

MacLean RR, Waters AJ, Brede E, Sofuoglu M. Effects of galantamine on smoking behavior and cognitive performance in treatment-seeking smokers prior to a quit attempt. Hum Psychopharmacol. 2018; e2665.

Giarola A, Auber A, Chiamulera C. Acetylcholinesterase inhibitors partially generalize to nicotine discriminative stimulus effect in rats. Behav Pharmacol. 2011; 22(1):1-6.

Moerke MJ and McMahon LR. Nicotine-like discriminative stimulus effects of acetylcholinesterase inhibitors and a muscarinic receptor agonist in Rhesus monkeys. Drug Dev Ind Pharm. 2019; 45(5):861-867.

de Moura FB and McMahon LR. The contribution of α4β2 and non-α4β2 nicotinic acetylcholine receptors to the discriminative stimulus effects of nicotine and varenicline in mice. Psychopharmacol (Berl). 2017; 234(5):781-792.

Stennett A, Krebs NM, Liao J, Richie JP, Jr., Muscat JE. Ecological momentary assessment of smoking behaviors in native and converted intermittent smokers. Am J Addict. 2018; 27(2):131-138.

Sofuoglu M, Herman AI, Li Y, Waters AJ. Galantamine attenuates some of the subjective effects of intravenous nicotine and improves performance on a Go No-Go task in abstinent cigarette smokers: a preliminary report. Psychopharmacol (Berl). 2012; 224(3):413-420.

Wilkinson DS, Gould TJ. The effects of galantamine on nicotine withdrawal-induced deficits in contextual fear conditioning in C57BL/6 mice. Behav Brain Res. 2011; 223(1):53-57.

Aldulaimi O. Screening of fruits of seven plants indicated for medicinal use in Iraq. Pharmacogn Mag. 2017; 13(Suppl 2):S189-s95.

Skalicka-Wozniak K, Budzynska B, Biala G, BoguszewskaCzubara A. Scopolamine-induced memory impairment is alleviated by anthotoxin: role of acetylcholinesterase and oxidative stress processes. ACS Chem Neurosci. 2018; 9(5):1184-1194.

Zhang W, Kilicarslan T, Tyndale RF, Sellers EM. Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab Dispos. 2001; 29(6):897-902.

Usmani QI, Jahan N, Aleem M, Hasan SA. Aatrilal (Ammi majus L.), an important drug of Unani system of medicine: A review. J Ethnopharmacol. 2021; 276:114144.

Bhardwaj S, Gaur PK, Tiwari A. Development of topical nanoemulgel using combined therapy for treating psoriasis. Assay Drug Dev Technol. 2022; 20(1):42-54.

Damaj MI, Siu EC, Sellers EM, Tyndale RF, Martin BR. Inhibition of nicotine metabolism by methoxysalen: Pharmacokinetic and pharmacological studies in mice. J Pharmacol Exp Ther. 2007; 320(1):250-257.

Alsharari S, Siu E, Tyndale R, Damaj M. Pharmacokinetic and pharmacodynamics studies of nicotine after oral administration in mice: effects of methoxsalen, a CYP2A5/6 inhibitor. Nicotine Tob Res. 2014; 16(1):18-25.

Sellers EM, Ramamoorthy Y, Zeman MV, Djordjevic MV, Tyndale RF. The effect of methoxsalen on nicotine and 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in vivo. Nicotine Tob Res. 2003; 5(6):891-899.

Budzynska B, Skalicka-Wozniak K, Kruk-Slomka M, Wydrzynska-Kuzma M, Biala G. In vivo modulation of the behavioral effects of nicotine by the coumarins xanthotoxin, bergapten, and umbelliferone. Psychopharmacol (Berl). 2016; 233(12):2289-300.

Bagdas D, Muldoon PP, Zhu AZ, Tyndale RF, Damaj MI. Effects of methoxsalen, a CYP2A5/6 inhibitor, on nicotine dependence behaviors in mice. Neuropharmacol. 2014; 85:67-72.

Wills L and Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem. 2021; 157(5):1652-1673.

Sellers EM, Kaplan HL, Tyndale RF. Inhibition of cytochrome P450 2A6 increases nicotine's oral bioavailability and decreases smoking. Clin Pharmacol Ther. 2000; 68(1):35-43.

Maitray A and Rishi P. Methoxsalen-induced macular toxicity. Indian J Ophthalmol. 2017; 65(11):1243-1245.

Farhadi M, Mohseni Kouchesfahani H, Shockravi A, Foroozanfar M, Parivar K. The adverse effects of the methoxsalen and ultraviolent A radiation on spermatogenesis in mice. Iran J Reprod Med. 2015; 13(8):489-494.

Máthé Á. Medicinal and Aromatic Plants of North America. 1 ed. Switzerland: Springer Cham; 2020. VIII, 342 p.

Dwoskin LP and Crooks PA. A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse. Biochem Pharmacol. 2002; 63(2):89- 98.

Damaj MI, Patrick GS, Creasy KR, Martin BR. Pharmacology of lobeline, A nicotinic receptor ligand. J Pharmacol Exp Ther. 1997; 282(1):410-419.

Roni MA and Rahman S. The effects of lobeline on nicotine withdrawal-induced depression-like behavior in mice. Psychopharmacol (Berl). 2014;231(15):2989-2998.

Miller D, Harrod S, Green T, Wong M-Y, Bardo M, Dwoskin L. Lobeline attenuates locomotor stimulation induced by repeated nicotine administration in rats. Pharmacol Biochem Behav. 2003; 74(2):279-286.

Glover ED, Rath JM, Sharma E, Glover PN, Laflin M, Tonnesen P, Repsher L Quiring JA. Multicenter phase 3 trial of lobeline sulfate for smoking cessation. Am J Health Behav. 2010; 34(1):101-109.

McChargue DE, Collins FL, Jr., Cohen LM. Effect of nonnicotinic moist snuff replacement and lobeline on withdrawal symptoms during 48-h smokeless tobacco deprivation. Nicotine Tob Res. 2002; 4(2):195-200.

Davison GC and Rosen RC. Lobeline and reduction of cigarette smoking. Psychol Rep. 1972; 31(2):443-456.

Stead LF and Hughes JR. Lobeline for smoking cessation. The Cochrane database of systematic reviews. 2012; (2):Cd000124.

Lysek N, Rachor E, Lindel T. Isolation and structure elucidation of deformylflustrabromine from the North Sea bryozoan Flustra foliacea. Z Naturforsch C. 2002; 57(11- 12):1056-1061.

Kim JS, Padnya A, Weltzin M, Edmonds BW, Schulte MK, Glennon RA. Synthesis of desformylflustrabromine and its evaluation as an α4β2 and α7 nACh receptor modulator. Bioorg Med Chem Lett. 2007; 17(17):4855-4860.

Sala F, Mulet J, Reddy KP, Bernal JA, Wikman P, Valor LM, Peters L, König GM, Criado M, & Sala S. Potentiation of human alpha4beta2 neuronal nicotinic receptors by a Flustra foliacea metabolite. Neurosci Lett. 2005; 373(2):144-149.

Hamouda AK, Jackson A, Bagdas D, Imad Damaj M. Reversal of nicotine withdrawal signs through positive allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors in male mice. Nicotine Tob Res. 2018; 20(7):903- 907.

Downloads

Published

2022-09-01

How to Cite

Wong, P. K., Yusoff, S. D., Fauzi, N. M., & Yaakob, N. S. (2022). Medicinal Plants and Natural-Derived Compounds for Smoking Cessation: Is There a Real Potential? http://www.doi.org/10.26538/tjnpr/v6i9.1. Tropical Journal of Natural Product Research (TJNPR), 6(9), 1349–1358. Retrieved from https://www.tjnpr.org/index.php/home/article/view/1249