Phytochemical Composition, Antioxidant Activity and Toxicity of Aqueous Extract of Picralima nitida in Drosophila melanogaster

doi.org/10.26538/tjnpr/v4i12.19

Authors

  • Opeyemi C. De Campos Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria
  • Modupe P. Layole Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria
  • Franklyn N. Iheagwam Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria
  • Solomon O. Rotimi Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria
  • Shalom N. Chinedu Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

Keywords:

P. nitida, Locomotive behaviour, Survival rate, D. melanogaster, Antioxidant activity

Abstract

Picralima nitida is a rainforest plant used for the treatment and management of diabetes and some other diseases in folklore medicine. In recent years, Drosophila melanogaster has served as an excellent model organism for toxicity studies of plants and also for the study of some diseases. This study focused on the antioxidant activity, phytochemical composition, and toxicity of aqueous seed extract of P. nitida in D. melanogaster. Phytochemical and antioxidant analyses of the extract were assessed using standard methods. The toxicity of the aqueous seed extract of P. nitida (APN) was also assessed, after seven days of exposure to APN (1-32 mg/mL), based on the rate of survival, locomotive performance and antioxidant effect in flies. Quantitative phytochemical analyses of APN showed the total flavonoid content to be 58.23 ± 0.79 mg quercetin equivalent/g dry weight (DW). The phenolic content was estimated to be 45.02 ± 0.27 mg gallic acid equivalent/g DW while β-carotene and lycopene contents, were 0.039 ± 0.002 and 0.047 ± 0.001 μg/mg, respectively. The anthocyanin content was 3.98 ± 1.28 μg/mL of cyanidin-3-glucoside equivalents. The result of the in vivo study showed that APN caused a reduction in the survival and locomotive behaviour of flies at 32 mg/mL. There was also an increase in the concentration of malondialdehyde and a reduction in the activity of acetylcholinesterase, glutathione-S-transferase and superoxide dismutase at high concentration of APN. The study showed that P. nitida seeds extract, despite its medicinal benefits, is toxic at high concentrations in D. melanogaster

Author Biographies

Opeyemi C. De Campos, Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

Covenant University Public Health and Wellbeing Research Cluster (CUPHERC), Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

Franklyn N. Iheagwam, Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

Covenant University Public Health and Wellbeing Research Cluster (CUPHERC), Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

Solomon O. Rotimi, Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

Covenant University Public Health and Wellbeing Research Cluster (CUPHERC), Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

Shalom N. Chinedu, Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

Covenant University Public Health and Wellbeing Research Cluster (CUPHERC), Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

References

Yakubu OF, Adebayo AH, Famakinwa TO, Adegbite OS, Ishola TA, Imonikhe LO, Adeyemi OA, Awotoye OA, Iweala EEJ. Antimicrobial and toxicological studies of Ricinodendron Heudelotii (Baill.). Asian JPharm Clin Res. 2018; 11:299-305.

Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules 2016; 21(6):807.

Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano AR, Miraldi E, Biag M.Phytotherapy in the management of diabetes: A review. Molecules 2018; 23(1):105. 4 Dar RA, Shahnawaz M, Qazi PH, Qazi H. General overview of medicinal plants: A review. J Phytopharmacology. 2017; 6(6):349-351.

Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. Medicinal plants: Past history and future perspective. J HerbMed Pharmacol. 2018; 7(1):1-7.

Erharuyi O, Falodun A, Langer P. Medicinal uses, phytochemistry and pharmacology of Picralima nitida (Apocynaceae) in tropical diseases: A review. Asian Pac J Trop Med. 2014; 7(1):1-8.

Olufunsho A, Coulidiaty AGV, Oluyemi AG, Sunday A, Omoseyindemi B, Busia F. Toxicological evaluation of Picralima nitida in rodents. J Ethnopharmacol. 2019; 236:205-219.

Dapaah G, Koffuor GA, Mante PK, Ben IO. Antitussive, expectorant and analgesic effects of the ethanol seed extract of Picralima nitida (Stapf) Th. and H. Durand. Res Pharm Sci. 2016; 11(2):100-112.

Dapaah G, Koffuor GA, Mante PK, Ben IO. The possible mode of antitussive and expectorant activity of the ethanol seed extracts of Picralima nitida ((Stapf) Th. & H. Durand). J Tradit Complement Med. 2017; 7(1):133-140.

Nolé T. Medicinal uses and natural availability of three plant species in selected ecosystems in Cameroon. J Anal Pharm Res. 2017; 4(4):00109

Macdonald I, Oghale O, Ikechi EG, Orji OA. Hepatoprotective potentials of Picralima nitida against in vivo carbon tetrachloride-mediated hepatotoxicity. J Phytopharmacol. 2016; 5(1):6-9.

Showande SJ, Fakeye TO, Kajula M, Hokkanen J, Tolonen A. Potential inhibition of major human cytochrome P450 isoenzymes by selected tropical medicinal herbs-Implication for herb–drug interactions. Food Sci Nutr. 2019; 7(1):44-55.

Amaeze OU, Aderemi-Williams RI, Ayo-Vaughan MA, Ogundemuren DA, Ogunmola DS, Anyika EN. Herbal medicine use among Type 2 diabetes mellitus patients in Nigeria: understanding the magnitude and predictors of use. Int J Clin Pharm. 2018; 40(3):580-588.

Salehi B, Ata A, Kumar NVA, Sharopov F, RamírezAlarcón K, Ruiz-Ortega A, Ayatollahi SA, Fokou PVT, Kobarfard F, Zakaria ZA, Iriti M, Taheri Y, Martorell M, Sureda A, Setzer WN, Durazzo A, Lucarini M, Santini A, Capasso R, Ostrander, EA, Atta -ur-Rahman, Choudhary MI, Cho WC, Sharifi-Ra J. Antidiabetic potential of medicinal plants and their active

components. Biomolecules 2019; 9(10):551.

Igwebuike LO. Studies on Ulceroprotective and Free Radical Scavenging Potential of Picralima nitida Ethanol Seed Extract on Albino Rats. [Online]. 2019 [cited 2020 Nov 04]. Available from: http://futospace.futo.edu.ng/handle/123456789/3042.

Shittu H, Gray A, Furman B, Young L, Glucose uptake stimulatory effect of akuammicine from Picralima nitida (Apocynaceae). Phytochem Lett. 2010; 3(1):53-55.

Alcover CF, Bernadat G, Kabran FA, Le Pogam P, Leblanc K, Ramos AEF, Jean-François G, Mouray E, Grellier P, Poupon E, Beniddir MA. Molecular networking reveals serpentinine-related bisindole alkaloids from Picralima nitida, a previously wellinvestigated species. J Nat Prod. 2020; 83(4):1207-1216

Okunji CO, Iwu MM, Ito Y, Smith PL, Preparative separation of indole alkaloids from the rind of Picralima nitida (Stapf) T. Durand & H. Durand by pH-zone-refining countercurrent chromatography. J Liq Chromatogr Relat Technol. 2005; 8(5):775-783.

Tane P, Tene M, Sterner O. Picranitine, a new indole alkaloid from Picralima nitida (Apocynaceae). Bull Chem Soc Ethiop. 2002; 16(2):165-168.

Idowu ET, Ajaegbu HCN, Omotayo AI, Aina OO, Otubanjo OA. In vivo anti-plasmodial activities and toxic impacts of lime extract of a combination of Picralima nitida, Alstonia boonei and Gongronema latifolium in mice infected with Chloroquine-sensitive Plasmodium berghei. Afr Health Sci. 2015; 15(4):1262-1270.

Kouitcheu MLB, Kouam J, Paul A, Etoa FX. Phytochemical screening and toxicological profile of methanolic extract of Picralima nitida fruit-rind (Apocynaceae). Toxicol Environ Chem. 2008; 90(4):815-828.22 Aryal B and Lee Y. Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Rep.2019; 52(4):250-258.

Mirzoyan Z and Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P. Drosophila melanogaster: A model organism to study cancer, Front Genet. 2019; 10:Article 51.

Riaz B, Zahoor MK, Zahoor MA, Majeed HN, Javed I, Ahmad A, Jabeen F, Zulhussnain M, Sultana K. Toxicity, phytochemical composition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster, EvidBased Compl Altern Med. 2018; 2018: Article ID 2325659.

Farombi EO, Abolaji AO, Farombi TH, Oropo AS, Owoje OA, Awunah MT. Garcinia kola seed biflavonoid fraction (Kolaviron), increases longevity and attenuates rotenone-induced toxicity in Drosophila melanogaster. Pestic Biochem Physiol. 2018; 145:39-45.

Baenas N and Wagner AE. Drosophila melanogaster as an alternative model organism in nutrigenomics. Genes

Nutr. 2019; 14(14):1-11.

Chinedu S, Olasumbo A, Eboji O, Emiloju O, Arinola O, Dania DI. Proximate and phytochemical analyses of Solanum aethiopicum L. and Solanum macrocarpon L. fruits. Res J Chem Sci. 2011; 1(3):63-71.

Iheagwam FN, Nsedu EI, Kayode KO, Emiloju OC, Ogunlana OO, Chinedu S.N. Bioactive screening and in vitro antioxidant assessment of Nauclea latifolia leaf decoction. In: AIP Conference Proceedings. 2018; 1954: 030015-1-030015-7.

Ainsworth EA and Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007; 2(4):875-877.

Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012; 12(1):221.

Sharma A, Goyal R, Sharma L, Potential biological efficacy of Pinus plant species against oxidative, inflammatory and microbial disorders. BMC Complement Altern Med. 2016; 16(1): 35.

Rastogi S, Pandey MM, Rawat AKS, Phytochemical analysis, phenolic content and antioxidant properties of different parts of Terminalia bellirica (Gaertn.) Roxb. A comparative study. Indian J Tradit Know. 2018; 17 (2):370-375.

Abolaji OA, Kamdem PJ, Lugokenski TH, Nascimento KT, Waczuk PE, Farombi, OE Loreto DEL, Rocha TJB. Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster. Free Radic Biol Med. 2014; 71:99-108.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal Biochem. 1979; 95(2):351-358.

Marklund S and Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974; 47(3):469-474.

Habig WH, Pabst MJ, Jakoby WB. Glutathione S transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974; 249(22):7130-7139.

Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione Stransferase activities in rat lung and liver. BBA - Gen Subj. 1979; 582(1):67-78.

Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7(2):88-95.

Lowry OH, Rosebrough NJ, Farr Al, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-275.

Akinwunmi KF and Amadi CV. Assessment of antioxidant and antidiabetic properties of Picralima

nitida seed extracts. J Med Plants Res. 2019; 13(1):9-17.

Otoo L, Koffuor G, Ansah C, Mensah K, Benneh C, Ben IO. Assessment of an ethanolic seed extract of Picralima nitida ((Stapf) Th. and H. Durand) on reproductive hormones and its safety for use. J Intercult Ethnopharmacol. 2015; 4(4):293-301.

Loumpangou NC & Tsiba G. Phytochemical screening and evaluation of the antioxidant activity of the polar extracts Picralima nitida Stapf. (Apocynaceae) family. J Pharmacogn Phytochem. 2016; 5(4):198-204.

Erharuyi O and Falodun A. Free radical scavenging activities of methanol extract and fractions of Picralima nitida (Apoceanaceae). J Appl Sci Environ Manag. 2012; 16(3):291-294.

Valéria SDPF, Felipe DG, Echeverria MG, Raquel MK, Kemmerich MI, Ternes APL, da Costa JGM, Athayde ML, Boligo AA, Kamdem JP, Franco JL, de Menezes IRA, Posser T. Phytochemical constituents and toxicity of Duguetia furfuracea hydroalcoholic extract in drosophila melanogaster. Evidence-based Complement Altern Med. 2014; 2014:Article ID 838101.

Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim). 2018; 12(3):88-93.

Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018; 217(6):1915-1928.

Ferguson GD and Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol. 2019; 24:101171.

Robaczewska J, Kedziora-Kornatowska K, Kozakiewicz M, Zary-Sikorska E, Pawluk H, Pawliszak W, Kedziora J. Role of glutathione metabolism and glutathione-related antioxidant defense systems in hypertension. J Physiol Pharmacol. 2016; 67(3):331-337.

Kulbat K. The role of phenolic compounds in plant resistance. Biotechnol Food Sci. 2016; 80(2):97-108.50 Ghasemzadeh A and Ghasemzadeh N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J Med Plant Res. 2011; 5(31):6697-6703.

Thapa S, Lv M, Xu H. Acetylcholinesterase: A primary target for drugs and insecticides, Mini-Reviews Med Chem. 2017; 17(17):1665-1676.

Franjesevic AJ, Sillart SB, Beck JM, Vyas S, Callam CS, Hadad CM. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chemistry 2019; 25(21):5337-5371.

Downloads

Published

2022-10-25

How to Cite

Campos, O. C. D., Layole, M. P., Iheagwam, F. N., Rotimi, S. O., & Chinedu, S. N. (2022). Phytochemical Composition, Antioxidant Activity and Toxicity of Aqueous Extract of Picralima nitida in Drosophila melanogaster: doi.org/10.26538/tjnpr/v4i12.19. Tropical Journal of Natural Product Research (TJNPR), 4(12). Retrieved from https://www.tjnpr.org/index.php/home/article/view/915

Most read articles by the same author(s)