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					ABSTRACT  

					ARTICLE INFO  

					Excessive alcohol drinking leads to chronic kidney injury (CKI). Bidens pilosa, as a medicinal  

					plant, has promising antibacterial, antimalarial, hepatoprotective, and antidiabetic activities. There  

					is a dearth of information on the therapeutic effect of ethanol extract of Bidens pilosa leaves  

					(EEBP) against alcohol-induced CKI. The exploration of EEBP as renoprotection was evaluated  

					through a comprehensive experimental and pharmacoinformatics analysis. Alcohol (10 ml/kg)  

					was administered for 6 weeks or in combination with EEBP (250, 500, and 750 mg/kg). Induction  

					of alcohol significantly (p ≤ 0.05) increased the total cholesterol, triglyceride, LDL, creatinine,  

					and uremic levels. Furthermore, kidney tissue abnormalities were observed in the alcohol group.  

					The data indicated that EEBP improved the kidney histology and decreased the levels of lipid  

					profile and kidney function parameters. The compounds have the flexibility and stability to bind  

					to active sites of protein, consisting of PPARG, SIRT, HIF1A, and NQO1. This study shows that  

					EEBP exerted an ameliorative effect in alcohol-induced kidney injury.  
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					Bidens pilosa is a medicinal plant used for managing several diseases,  

					for instance, gastritis, pharyngitis, diarrhea, smallpox, colic, infectious  

					Introduction  

					Chronic alcohol intake has a higher morbidity and mortality due  

					to the dysfunction of the kidneys.1 The alcohol dehydrogenase (ADH)  

					plays an important role in converting alcohol to acetaldehyde, which  

					could be toxic in cells.2 The development of cancer with alcohol intake  

					is associated with the ADH1B gene. The kidney function damage was  

					related to nephrotoxicity.3 Based on the previous study, it has been  

					stated that primary kidney disorders accelerated by continuous alcohol  

					consumption tend to cause a decreased the rate of glomerular filtration  

					at 7 mL/min/1.69 m2. 4 High-dose alcohol metabolism increases the  

					nicotinamide adenine dinucleotide (NADH), lipid oxidation, and free  

					radicals. 5 The imbalance of antioxidant agents6, for example NAD(P)H  

					quinone dehydrogenase-1 (NQO1), could be an indicator for the rise of  

					alcohol dehydrogenase activity that is linked to the excessive TGF-β  

					transcription.7 In addition, the accumulation of alcohol disrupts 11β-  

					hydroxysteroid dehydrogenase activities in the kidney.8 This enzyme is  

					involved in blood pressure regulation and the mineralocorticoid  

					receptor in the kidney.9 The previous evidence reported that higher  

					alcohol intake decompensated 75% of cirrhosis associated with  

					glomerulopathy.10 Although numerous studies have reported that CKI  

					prevalence correlated with heavy alcohol intake11-13, the mechanisms of  

					the ameliorative effects of medicinal plants on CKI therapy are  

					unknown.  

					disease and asthma.14 B. pilosa leaves have higher antioxidants that  

					tackle scavenge free radicals.15 Prior studies documented that the  

					constituents of B. pilosa, consisting of phenylpropanoids, flavonoids,  

					aliphatic compounds, porphyrins, terpenes, and flavonoids, have  

					significantly decreased the risk of diabetes, hypertension, and  

					hyperglycemia.16 Based on pharmacological activities, the EEBP has  

					some properties, such as anti-carcinogenic, anti-mutagenic, hepatic  

					disorder treatment, immunomodulatory, and anti-inflammatory.17  

					Treatments for CKI are usually associated with undesirable  

					effects.18,19 There are limited studies on the biological mechanisms of  

					EEBP would attenuate the kidney disorder after administration of  

					alcohol and construct the molecular pathway of CKI treatment.  

					Methods  

					Plant Authentication  

					Bidens pilosa leaf was procured from Jae Village (GPS Code:  

					6MJW568P+HH, North Sumatera, Indonesia) on March 12, 2025. The  

					classification process was done by  

					a

					taxonomist the Biology  

					Laboratory, State University of Medan, Indonesia.  

					Extraction of B. pilosa leaves  

					100 g of sample was rinsed, dried and powdered to the mesh size. The  

					maceration was adjusted utilizing ethanol solvent (89%) with twice-a-  

					week intermittent shaking. The extract was refined, concentrated by a  

					rotary evaporator, and stored at 40C.  
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					In vivo studies in rats  

					The Institutional Ethics Committees of UNIMED approved all animal  

					treatment regulations (ethical ID 0453/KEPH-FMIPA/2019). The  

					animal protocols followed the guidelines of 2010/63/EU. This study  

					was executed for six weeks using twenty-five male rats (180 ± 30 g)  

					(n=5). The rats were treated as follows: the group T0 was administered  

					CMC 0.5%; group T1 was given orally 32% alcohol 10 ml/kg; group  

					T2 received 32% alcohol (10 ml/kg) + EEBP 250 mg/kg; group T3 was  

					given 32% alcohol 10 ml/kg + EEBP 500 mg/kg; group T4 was  

					administered 32% alcohol 10 ml/kg + EEBP 750 mg/kg. On the last  
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					experiment day, all the animals were anesthetized using chloroform had  

					Dynamic Simulation  

					had their neck dislocated, and were dissected in the abdominal cavity.  

					The blood was put in the tube with an ethylene diamine tetra acetic acid  

					(EDTA). The isolated kidneys were collected, weighed, and put into the  

					tube with 10% formalin neutral buffer.  

					The conformational ensembles were predicted using molecular  

					dynamic simulation.23 The Cabs-flex database was utilized to perform  

					the protein stability motion.24 RMSF scores determined the dynamic of  

					flexible regions between the active compounds of B. pilosa and  

					receptors.  

					Biochemical analysis  

					The blood was centrifuged at 3000 rpm for 5 minutes. Serum total  

					cholesterol, triglyceride, HDL, and LDL were evaluated using  

					commercial biochemical kits (PT. Rajawali Nusindo, Indonesia). The  

					creatinine and uremic level were determined using a photometric  

					method.  

					Results and Discussion  

					The metabolism of alcohol generates the accumulation of superoxide  

					radicals, ROS, and hydrogen peroxide.25 Continuous alcohol intake  

					could raise pro-inflammatory activities and oxidative injury.26 High  

					ROS production affects antioxidant activities and mitochondrial  

					impairment in the kidney cells.27 This evidence alters the vasopressin  

					Histology staining  

					The pathological alterations in kidney tissues were observed using the  

					secretion and electrolyte balance 28,29, which results in diuresis and  

					30,31  

					H&E method. The samples were dehydrated, cleared, infiltrated, and  

					hyponatremia.  

					The urinary antioxidant capacity32 affected the  

					20  

					embedded based on our previous research.  

					Tissue sections were  

					kidney function33 through the elimination process of hydroxyl, singlet  

					oxygen, and peroxyl radicals.34 In this current study, the alcohol model  

					of kidney injury was created to identify the beneficial effect of EEBP  

					through pharmacoinformatic and in vivo analysis. The alcohol rats (T1)  

					indicated the highest of oxidative injury markers in the kidney. In  

					contrast, the EEBP supplementation (500 and 750 mg/kg) significantly  

					reduced (p ≤ 0.05) total cholesterol, triglyceride, creatinine, uremic, and  

					LDL levels (Figure 1). Compared to group T0, a significant reduction  

					(p ≤ 0.05) of HDL was performed in the alcohol groups. Group T3  

					significantly increased the HDL level. This finding is consistent with  

					the previous investigation that the medicinal plant could suppress the  

					renal fibrosis and dysfunction in the mice model of CKI.35  

					photographed under magnification of 100x using a light microscope  

					(Nikon E400, Sanford).  

					Data Analysis  

					All distributed values were shown as mean ± standard deviation (SD).  

					Statistical evaluation was compared with ANOVA followed by post  

					hoc Tukey’s test. p ≤ 0.05 was considered the significant difference.  

					Modern Pharmacological Identification  

					The phytocompounds from B. pilosa and gene markers of CKI were  

					exported to the STRING database. The confidence score of 0.7 was set  

					to predict the signal pathway between protein and active compounds of  

					the species “Homo sapiens”. Protein network construction was  

					demonstrated utilizing Cytoscape ver. 3.9.1. 21  

					Additionally, histoarchitecture examination of kidney tissues showed  

					the normal distal tubular and renal proximal structures in the control  

					groups (T0). In contrast, the significant histological abnormalities were  

					found in the alcoholic groups (T1); for instance, the inflammatory cell  

					infiltration, tubule interstitial fibrosis, Bowman’s capsule dilatation,  

					and glomerular shrinkage (Figure. 2). Morphological alteration of the  

					glomeruli could be the primary indicator in chronic kidney  

					progression.36–38 The treatment of EEBP at doses of 500 and 750 mg/kg,  

					respectively, indicated reduced distortions in kidney histology due to  

					fewer areas of tubular epithelial loss, Bowman’s space dilatation, and  

					cellular inflammation.  

					Docking Study  

					The compounds of EEBP were extracted from the PubChem database.  

					All protein structures (3D), for instance PPARG, SIRT, HIF1A, and  

					NQO1 22, were downloaded from the RCSB database. AutoDockTools  

					1.5.7 was employed to clean the water and ligands from the protein  

					structure. Autodock Vina software ver. 4.2 was applied to facilitate the  

					docking study. The interaction between the receptors and compounds  

					of B. pilosa complexes was rendered using Biovia Discovery Studios  

					software.  
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					Figure 1: Effect of EEBP supplementation on the level of (A) Creatinine, (B) Uremic; (C) Cholesterol; (D) Triglyceride; (E) HDL; and  

					(F) LDL in alcohol-induced kidney injury. T0 (CMC 0.5%); T1 (30 % alcohol 10 ml /kg); T2 (30 % alcohol 10 ml /kg + EEBP 250 mg  

					/kg); T3 (30 % alcohol 10 ml /kg + EEBP 500 mg /kg); T4 (30 % alcohol 10 ml /kg + EEBP 750 mg /kg). (#p ≤ 0.05, n=5.  

					The current research claimed 79 nodes and 901 edges in the protein  

					network construction between B. pilosa and alcohol kidney injury. The  

					Cytoscape software identified 13 core targets (Figure 3A), which had a  

					higher level, including TP53, AKT1, SIRT1, JUN, MAPK8, NQO1,  

					KRAS, PPARG, MTOR, HIF1A, MAPK3, IL6, and FOS. As depicted  

					in Figure 3B, the top 10 are the relevant biological enrichments of the  

					core target linked to CKI, notably the response to reactive oxygen  

					species and cellular response to chemical stress. The significant  

					mechanism pathway of B. pilosa relieved the CKI in alcohol rats is  

					illustrated in Figure 3C.  

					Furthermore, the docking analysis verified the potential of EEBP with  

					a higher binding affinity to the active site of PPARG, SIRT, HIF1A,  

					and NQO1, as presented in Figure 4. A total of 7 active compounds  

					from B. pilosa, such as, apigenin, apigenin-7-apioglucoside, lupeol  

					acetate, daucosterol, luteolin, quercetin, and lupeol acetate (Table 1),  

					have a good binding pose and a low docking score. Additionally, the  

					dynamic simulation data revealed the structural flexibility between the  

					active phytocompounds of B. pilosa and the core target complexes, as  

					shown in Figure 5. The optimization of novel therapy for CKI via  

					molecular mechanism evaluation tends to enhance the efficacy and  

					effectiveness of treatments40, for example, the development of  

					pharmacoinformatic strategies through the enhancement of integrin  

					β1/JNK signaling transduction in CKI.41  

					For a strong investigation of the therapeutic effect of EEBP,  

					pharmacoinformatic approaches39 have been employed to verify the  

					possible molecular mechanism of EEBP in alcohol-induced CKI.  
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					Figure 2: Effect of B. pilosa on histopathological alteration of kidney tissues in alcohol-induced CKI. T0 (CMC 0.5%); T1 (30 %  

					alcohol 10 ml /kg); T2 (30 % alcohol 10 ml /kg + EEBP 250 mg /kg); T3 (30 % alcohol 10 ml /kg + EEBP 500 mg /kg); T4 (30 %  

					alcohol 10 ml /kg + EEBP 750 mg /kg). GR: glomerulus, Kp: bowman’s capsule, TKP Bb: proximal tubule, End: endothelial, Pr:  

					inflammatory cells, Pn: inflammatory cells, BB: renal proximal tubular brush border, GRr: Glomerulus Retraction.  

					(a)  

					(b)  
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					(c)  

					Figure 3: (a) Network pharmacology highlighting B. pilosa alleviates chronic kidney injury in alcoholic rats; (b) Enrichment analysis  

					identifying significant biological activity of B. pilosa; (c) KEGG pathway illustrating the mechanism of B. pilosa against alcohol  

					induced chronic kidney injury  

					(ii)  

					(i)  

					(iv)  

					(iii)  

					(v)  

					Figure 4A: Docking studies between PPARG and phytochemical from B. pilosa (i) Daucosterol; (ii)Apigenin-7-  

					apioglucoside; (iii) Quercetin; (iv) Apigenin; (v) Luteolin.  
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					(ii)  

					(i)  

					(iv)  

					(iii)  

					(v)  

					Figure 4B: Visualization of binding sites between SIRT and active compounds from B. pilosa (i) Lupeol acetate; (ii)  

					Daucosterol; (iii) Apigenin-7-apioglucoside; (iv) Apigenin; (v) Quercetin.  

					(ii)  

					(i)  

					(iii)  

					(iv)  

					(v)  

					Figure 4C: Docking analysis between HIF1A and bioactive compounds of B. pilosa (i) Daucosterol; (ii)Apigenin-7-apioglucoside; (iii)  

					Lupeol acetate; (iv) Apigenin; (v) Luteolin  
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					(i)  

					(ii)  

					(iv)  

					(iii)  

					(v)  

					Figure 4D: Molecular docking between NQO1 and phytocompound of B. pilosa (i) Apigenin; (ii)Daucosterol; (ii)Apigenin-7-  

					apioglucoside; (iv) Lupeol acetate; (v) Luteolin  

					Table 1: Docking results of all phytocompounds of B. pilosa binding to the target protein linked to alcoholic kidney injury  

					Compound  

					PPARG  

					SIRT  

					HIF1A  

					NQO1  

					Bindi  

					ng  

					Affin  

					ity  

					(kcal/  

					mol)  

					Hydrog  

					en Bond  

					Hydrop  

					hobic  

					Interact  

					ion  

					Bindin  

					g

					Affinit  

					y

					(kcal/  

					mol)  

					Hydrogen  

					Bond  

					Hydroph  

					obic  

					Interacti  

					on  

					Bind  

					ing  

					Hydroge Hydrophob Bindin  

					Hydrogen  

					Bond  

					Hydroph  

					obic  

					Interacti  

					on  

					n Bond  

					ic  

					g

					Affi  

					nity  

					(kcal  

					/mol  

					)

					Interaction  

					Affinit  

					y

					(kcal/  

					mol)  

					Apigenin  

					-9.2  

					-9.7  

					Met463  

					Leu453  

					,

					Lys457  

					-8.5  

					-8.8  

					Ile347,  

					Asp348  

					Ala262,  

					Ile270,  

					Phe273  

					-7.6  

					Asn85,  

					Ser86,  

					Leu129,  

					Val155  

					-10.5  

					-8.2  

					Ser173,  

					His177,  

					Ala223  

					Phe228  

					Phe228  

					Glu134,  

					Val155  

					Gly127,  

					Gln132,  

					Val155,  

					Thr157,  

					Arg167,  

					Asn193  

					Apigenin-  

					7-  

					apioglucos  

					ide  

					Phe282, Ala292,  

					Ala262,  

					Gln345,  

					Ser441,  

					Ser442,  

					Leu443,  

					Arg466,  

					Asp481  

					Val266,  

					Arg274,  

					Arg466  

					-8.1  

					-7.2  

					Leu129,  

					Pro154,  

					Glu160  

					Tyr132,  

					Phe236  

					Ser289,  

					Glu295,  

					His323,  

					His449  

					Met329  

					Butein  

					-7.8  

					Gln454,  

					Glu460,  

					Met463,  

					Asp475  

					Val450,  

					Leu453  

					,

					Ile456,  

					Lys457,  

					Met463  

					,

					-7.6  

					Gly480,  

					Cys482  

					Ala262  

					Gly127,  

					Val155,  

					Thr157,  

					Asp190,  

					Asp197  

					Tyr156,  

					Thr157,  

					Pro192  

					-7.4  

					Ala223,  

					His257  

					Leu230  

					Leu465  

					,

					Tyr473  
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					Okanin  

					-8.0  

					-8.1  

					Gln454,  

					Ile456,  

					Met463,  

					Asp475  

					Val450,  

					Leu453  

					,

					Lys457,  

					Tyr473  

					-8.3  

					-7.5  

					-9.3  

					Ile270,  

					Asn465,  

					Arg466,  

					Gly480,  

					Cys482  

					Ala262,  

					Val266,  

					Arg466  

					-6.8  

					-6.9  

					-8.4  

					Tyr83,  

					Asn85,  

					Ser86,  

					Gly127,  

					Leu128  

					Leu129,  

					Pro154,  

					Val155  

					-7.2  

					-6.6  

					-9.2  

					Ala223,  

					His257  

					Tyr132,  

					Leu230  

					Centaureid  

					in  

					Arg288,  

					Glu295,  

					Ser342,  

					Glu343  

					Arg288  

					,

					Ile326,  

					Leu330  

					Lys408  

					Glu410,  

					Val412,  

					Pro419  

					Asp126,  

					GLy127,  

					Val155,  

					Thr157,  

					Gln164  

					Tyr156,  

					Glu160  

					Phe116  

					Phe120  

					Phe178  

					Daucostero  

					l

					-10.4  

					Leu228,  

					Glu343  

					Phe282  

					Asn226  

					Pro212,  

					Ile223,  

					Asp298,  

					Phe414  

					Arg167,  

					Asp190,  

					Asn193,  

					Asp197,  

					Arg200  

					Thr84,  

					Leu129,  

					Pro154,  

					Val155,  

					Tyr156  

					Tyr128,  

					Met131,  

					Tyr132,  

					Phe178,  

					Phe228,  

					Leu230,  

					Phe236  

					,

					Gln286  

					,

					Leu333  

					,

					Phe363  

					,

					Leu453  

					,

					Leu469  

					,

					Tyr473  

					Phe226  

					,

					Arg288  

					,

					Ala292  

					Ile281,  

					Phe282  

					,

					Gln286  

					,

					Luteolin  

					-8.5  

					-6.5  

					Leu228,  

					Arg288,  

					Ser342  

					-7.9  

					-5.4  

					Lys304  

					Ile210  

					Pro212,  

					Ala295,  

					Asp298,  

					Tyr301  

					-7.5  

					-4.3  

					Leu128,  

					Arg167,  

					Asp190  

					Pro154,  

					Glu160  

					-7.9  

					-5.1  

					Ala223,  

					Phe236,  

					Phe228  

					Linolenic  

					Acid  

					-

					Thr209,  

					Pro212,  

					Pro291,  

					Gln294,  

					Ala295,  

					Phe414  

					Glu134  

					Pro154,  

					Tyr156,  

					Thr157,  

					Glu160,  

					Pro192  

					Ser71, Gly122  

					Pro68,  

					Phe116,  

					Glu117,  

					Phe120,  

					Tyr126,  

					Ile175,  

					Phe178  

					Ile326,  

					Tyr327,  

					Leu356  

					,

					Phe360  

					,

					Phe363  

					,

					Phe453  

					,

					Tyr473  

					Tyr320,  

					His323,  

					Val446,  

					Thr447,  

					Gln454  

					Lupeol  

					acetate  

					-7.1  

					-

					-10.3  

					-

					Leu206,  

					Ile223,  

					Pro291,  

					Phe414  

					-7.7  

					-

					Pro154,  

					Tyr156,  

					Pro192  

					-8.1  

					-

					Phe116,  

					Tyr128,  

					Phe178,  

					Phe232  

					Quercetage  

					nin  

					-7.9  

					-9.7  

					Ser289  

					Arg288  

					,

					Glu291  

					, Ile326  

					-7.3  

					-8.3  

					Gln361,  

					Glu416  

					Val412,  

					Pro419  

					-6.7  

					-7.4  

					Asn85,  

					Ser86,  

					Ile90,  

					Leu129,  

					Pro154,  

					Val155  

					-6.7  

					-7.5  

					Phe116,  

					Gly174  

					Phe178  

					Glu134,  

					Val155,  

					Arg200  

					Arg120,  

					His125,  

					Gly127,  

					Gln132,  

					Val155,  

					Thr157  

					Quercetin  

					Cys285, Leu330  

					Ala262,  

					Asp272,  

					Arg274,  

					Ser275,  

					Gly440,  

					Ser442,  

					Leu443,  

					Arg 466  

					Ala262,  

					Val266  

					Leu129,  

					Pro192  

					Phe120,  

					Gly122,  

					Tyr126,  

					Gly174  

					Pro68,  

					Phe178  

					Arg288,  

					Glu295,  

					Ser342,  

					Glu343  

					,

					Leu333  
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					(i)  

					(ii)  

					(iii)  

					(iv)  

					(v)  

					Figure 5A: RMSF plot of PPARG – the phytocompounds of B. pilosa for the structural flexibility analysis (i) Daucosterol;  

					(ii)Apigenin-7-apioglucoside; (iii) Quercetin; (iv) Apigenin; (v) Luteolin.  

					(i)  

					(ii)  

					(iii)  

					(iv)  

					(v)  

					Figure 5B: The value of RMSF for the structural stability analysis between SIRT and the active compounds from B. pilosa (i) Lupeol  

					acetate; (ii)Daucosterol; (iii) Apigenin-7-apioglucoside; (iv) Apigenin; (v) Quercetin  
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					(i)  

					(ii)  

					(iii)  

					(iv)  

					(v)  

					Figure 5C: The value of RMSF in the structural flexibility analysis between HIF1A and the active compounds from B. pilosa (i)  

					Lupeol acetate; (ii)Daucosterol; (iii) Apigenin-7-apioglucoside; (iv) Apigenin; (v) Quercetin.  

					(ii)  

					(i)  

					(iv  

					(iii)  

					(v)  

					Figure 5D: The value of RMSF in the structural stability analysis between NQO1 and the active compounds from B. pilosa (i) Lupeol  
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