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					ABSTRACT  

					ARTICLE INFO  

					The rise of antibiotic-resistant Staphylococcus aureus necessitates novel antivirulence strategies.  

					Sortase A (SrtA), a key virulence factor, is an attractive target. Piper betle L., a medicinal plant  

					with diverse bioactivities, is a potential source of natural SrtA inhibitors. This study aimed to  

					identify such compounds through in silico analysis and to evaluate the antioxidant and  

					antibacterial potential of P. betle via in vitro assays. Nine bioactive compounds were screened  

					using molecular docking, absorption, distribution, metabolism, excretion, and toxicity prediction;  

					and molecular dynamics (MD) simulation (CABS-flex 2.0). Acetyleugenol exhibited the strongest  

					binding to SrtA (S score = -5.98 kcal/mol), favorable drug-likeness, high predicted intestinal  

					absorption, and low blood-brain barrier permeability. MD simulations showed that acetyleugenol  

					stabilized the catalytic residue Cys184 with a root mean square fluctuation = 0.261 Å, comparable  

					with that of the native substrate. Other compounds such as chavicol, showed similar stability,  

					although safrole raised toxicity concerns. In vitro, the ethanol extract of P. betle showed strong  

					antioxidant activity with IC₅₀ values of 6.49 µg/mL (DPPH) and 9.31 µg/mL (ABTS). The extract  

					also demonstrated antibacterial activity against Streptococcus mutans, with a minimum inhibitory  

					concentration of 0.31 mg/mL. Studies on the mechanism of the antibacterial effect showed  

					increased DNA and protein leakage in the extracellular fluid, indicating membrane disruption  

					owing to P. betle extract. Overall, acetyleugenol is a promising SrtA inhibitor, while P. betle  

					extract displays potent antioxidant and antibacterial effects. These findings highlight the  

					therapeutic potential of P. betle and its compounds as antimicrobial agents.  
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					Sortase A (SrtA), an enzyme critical for bacterial adhesion and  

					colonization, offers a promising strategy for reducing the selective  

					Introduction  

					Antimicrobial resistance (AMR) occurs when bacteria,  

					fungi, or parasites no longer respond to antimicrobial agents, causing  

					standard treatments to be ineffective and making infections harder to  

					treat. This issue has escalated into a global public health crisis, leading  

					to 1.27 million deaths directly linked to drug-resistant infections and  

					approximately 4.95 million deaths associated with AMR in 2019 alone.1  

					The WHO Global Antimicrobial Resistance Surveillance System data  

					reveal trends concerning AMR in Indonesia. For instance, 79% of  

					Klebsiella pneumoniae isolates from bloodstream infections were  

					resistant to third-generation cephalosporins, 40% of Staphylococcus  

					aureus strains were methicillin-resistant (MRSA), and 51% of  

					pressure that drives resistance.4, 5 Sortase A (SrtA) is a membrane-  

					bound cysteine transpeptidase that anchors virulence-associated surface  

					proteins to the bacterial cell wall by cleaving the LPXTG sorting motif  

					in precursor proteins.5 Its catalytic activity relies on three conserved  

					residues, namely, His120, Cys184, and Arg197, with Cys184 being  

					essential. Modifications to Cys184 eliminate enzymatic function,  

					confirming its role as a cysteine protease.5, 6 SrtA forms a thioester  

					intermediate during catalysis, which is resolved by the pentaglycine  

					cross-bridge in the peptidoglycan layer, leading to a stable amide  

					linkage that permanently attaches the protein; this process is vital for  

					tissue colonization and biofilm development.6 In addition to systemic  

					pathogens such as S. aureus, oral pathogens such as Streptococcus  

					mutans pose significant health challenges. S. mutans is a key contributor  

					to dental caries, as it is capable of forming biofilms and producing acid  

					that demineralizes tooth enamel.7 Beyond its role in oral disease, S.  

					mutans has been associated with extraoral infections, including  

					infective endocarditis and atherosclerosis, owing to its ability to enter  

					the bloodstream during dental procedures.8 The persistence and  

					pathogenicity of S. mutans are closely linked to its capacity for biofilm  

					formation and resistance to environmental stress, including oxidative  

					damage.9 Given the rising concern over biofilm-related infections, there  

					is a growing interest in natural compounds that can disrupt bacterial  

					membranes, inhibit virulence mechanisms, and provide antioxidant  

					protection. Natural products continue to be valuable sources of novel  

					antimicrobial agents because of their structural diversity and bioactive  

					potential. Piper betle L. (green betel leaf), commonly used in traditional  

					medicine throughout Southeast Asia, including Indonesia, contains  

					bioactive compounds such as eugenol and chavicol, which exhibit  

					antimicrobial, anti-inflammatory, and antioxidant properties.10  

					Acinetobacter  

					species  

					displayed  

					carbapenem  

					resistance.2  

					Staphylococcus aureus is a significant human pathogen responsible for  

					various infections, ranging from minor skin conditions to life-  

					threatening illnesses such as pneumonia and sepsis.3 MRSA emergence  

					highlights the urgent need for innovative therapies that bypass  

					traditional resistance pathways. Targeting virulence factors, such as  
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					This study explores the inhibitory potential of bioactive compounds  

					from Piper betle L. against SrtA in S. aureus using molecular  

					Subsequently, detailed ADMET predictions were conducted using the  

					pkCSM platform (http://biosig.unimelb.edu.au/pkcsm/), which utilizes  

					graph-based signatures to estimate pharmacokinetic and toxicity  

					properties.13 Absorption parameters included human intestinal  

					absorption (HIA), Caco-2 permeability, and P-glycoprotein (P-gp)  

					substrate and inhibitor status to infer oral bioavailability and potential  

					efflux liability. Distribution characteristics were evaluated through  

					predictions of blood-brain barrier (BBB) permeability and the volume  

					of distribution at steady state (VDss). Metabolic interactions were  

					assessed by predicting inhibitory effects on the major cytochrome P450  

					isoforms: CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4.  

					Excretion potential was determined via total clearance (CLtot), whereas  

					toxicity was predicted based on AMES mutagenicity and  

					hepatotoxicity.13  

					docking analysis and absorption, distribution, metabolism, excretion,  

					and toxicity (ADMET) prediction models. By focusing on virulence  

					rather than bacterial viability, this approach may provide new  

					therapeutic strategies to combat AMR. In addition, the antioxidant and  

					antibacterial activities of Piper betle ethanol extract were assessed in  

					vitro, including its efficacy against S. mutans and its possible  

					membrane-disruptive mechanism of action. These findings may provide  

					insight into the therapeutic potential of Piper betle as a natural source  

					of multifunctional agents to address bacterial virulence and oxidative  

					stress.  

					Materials and Methods  

					Chemicals and bacterial materials  

					Molecular dynamics (MD) simulation  

					2,2-diphenyl-1-picryl-hydrazyl  

					(DPPH)  

					and  

					2,2'-azino-bis(3-  

					MD simulations were employed to assess the structural stability and  

					flexibility of the SrtA ligand complexes under dynamic conditions. The  

					simulations were conducted using the CABS-flex 2.0 web server  

					ethylbenzothiazoline-6-sulfonic acid) (ABTS), K2S2O8 were purchased  

					from Sigma-Aldrich (St. Louis, USA). Streptococcus mutans ATCC  

					14721 was obtained from the Laboratory of Microbiology, Krida  

					Wacana Christian University, Indonesia.  

					(http://biocomp.chem.uw.edu.pl/CABSflex2),  

					a

					coarse-grained  

					modeling platform designed to simulate protein backbone  

					fluctuations.14  

					Methods  

					The top three ligand-bound complexes—acetyleugenol, methyleugenol,  

					and chavibetol—were selected based on their docking scores and key  

					interactions with residues in the SrtA active site. Each complex was  

					submitted in PDB format, with ligand coordinates integrated into the  

					protein structure file.  

					Docking studies  

					Identification of bioactive compounds in Piper betle L.  

					Bioactive compounds from Piper betle L. leaves were identified  

					through specialized phytochemical databases, including the Taiwan  

					Traditional Chinese Medicine Database (http://tcm.cmu.edu.tw/),  

					CABS-flex simulations were performed using the default parameters,  

					which included 50 simulation cycles and a simulation temperature of  

					1.4 (dimensionless units). Global distance restraints were automatically  

					applied to maintain the overall protein fold while allowing local  

					conformational flexibility. The output consisted of multiple  

					conformational models representing thermodynamically feasible  

					structures of the protein–ligand complex.  

					Post-simulation analysis involved calculating root mean square  

					fluctuation (RMSF) values for each residue, facilitating a comparative  

					evaluation between the unbound (apo) and ligand-bound SrtA forms.  

					The flexibility of the catalytic triad residues (His120, Cys184, and  

					Arg197) and ligand-contact residues such as Val168 and Ile199, which  

					are critical for enzymatic function and inhibitor binding. Structural  

					deviations and conformational shifts were visualized using PyMOL and  

					UCSF Chimera, to assess binding-induced stabilization and interaction  

					persistence throughout the simulation.  

					IJAHdb  

					(http://ijah.apps.cs.ipb.ac.id),  

					and  

					HERBALdb  

					12  

					(http://herbaldb.farmasi.ui.ac.id/).11,  

					The canonical Simplified  

					Molecular Input Line Entry System (SMILES) notations of each  

					compound were validated against the PubChem database to ensure  

					structural accuracy. Ligands were initially drawn in a two-dimensional  

					(2D) format using MarvinSketch and subsequently converted into  

					energy-minimized three-dimensional (3D) structures using Open Babel  

					(v.2.4.1).  

					Protein preparation and molecular docking  

					The 3D crystal structure of SrtA from Staphylococcus aureus was  

					retrieved from the Protein Data Bank (PDB ID: 1T2W and 1T2P).  

					Protein preparation was performed using MOE 2022.02, involving the  

					removal of crystallographic water molecules and irrelevant  

					heteroatoms, the assignment of protonation states using Protonate3D at  

					pH 7.4, and energy minimization using the AMBER10:EHT force  

					field.13 The active site was defined based on the co-crystallized LPXTG  

					peptide in the 1T2W structure, specifically targeting the conserved  

					catalytic residues His120, Cys184, and Arg197.  

					Prepared ligands were imported into the MOE, and the energy was  

					minimized and docked into the defined active site using the Dock  

					module. The Triangle Matcher algorithm was used for placement, with  

					London dG as the initial scoring function and Induced Fit as the  

					refinement protocol. Final binding affinities were estimated using the  

					GBVI/WSA dG scoring function.13 The LPXTG peptide served as a  

					positive control for comparative analysis.  

					In vitro analysis of P. betle extract  

					Extract preparation  

					Leaves of P. betle were obtained from the local market in Jakarta,  

					Indonesia (coordinates:  

					-6.175946662482058, 106.78365707878369) in October 2025. The  

					leaves were identified by Prof Kris H. Timotius of Krida Wacana  

					Christian University. A voucher specimen was deposited in the research  

					laboratory at Krida Wacana Christian University (a voucher number  

					KWSC 0063). After thoroughly cleaning the leaves, they were dried  

					using a food dehydrator at 40 °C for several days. The dried leaves (20  

					g) were macerated using 96% ethanol in a 1:10 ratio for 72 h. The  

					filtrate was obtained by filtering through a filter paper, after which the  

					solvent was evaporated using a Buchi R II rotary evaporator (Buchi  

					Labortechnik, Switzerland). The dried extract obtained was 3.02 g  

					(yield 15.10%), and was stored at 4 °C before use.  

					Post-Docking analysis  

					Top-ranked docking poses were analyzed using MOE’s interaction  

					analysis tools to assess the hydrogen bonding, hydrophobic interactions,  

					and involvement of catalytic residues. Compounds exhibiting high  

					binding affinity and favorable interaction profiles relative to the  

					LPXTG peptide were selected for further evaluation.  

					Antibacterial activity assays  

					Determination of bacterial inhibition zone  

					ADMET and drug-likeness prediction  

					The drug-likeness and pharmacokinetic profiles of the selected  

					bioactive compounds from Piper betle L. were systematically evaluated  

					using a combination of computational tools. Initially, the canonical  

					SMILES of each compound was retrieved from the PubChem database  

					Antibacterial effect of the ethanol extract of P. betle leaves was assayed  

					by an agar well diffusion method on Streptococcus mutans ATCC  

					14721 based on a previously reported method.14 The bacterial inoculum  

					(0.5 McFarland turbidity standard, 100 µL) was spread evenly into an  

					agar plate, thereafter, followed by the addition of molten Muller-Hinton  

					agar (OXOID CM0337). Subsequently, a 5-mm well was made on the  

					plate and suspended with the ethanol solution of P. betle extract (20  

					µL). Plates were incubated at 37 °C for 24 h. Ethanol was used as the  

					negative control.  

					and  

					submitted  

					to  

					the  

					SwissADME  

					web  

					server  

					(http://www.swissadme.ch/) to assess compliance with Lipinski’s Rule  

					of Five, which considers molecular weight, lipophilicity (logP),  

					hydrogen bond donors and acceptors, and molar refractivity as  

					indicators of oral bioavailability potential.12  
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					Determination of minimum inhibitory concentration (MIC)  

					mixture was incubated at 27 °C for 5 min at 250 RPM in a shaking  

					incubator (Thermostar BMG Labtech). The absorbance was measured  

					at 750 nm using a BioRad iMark plate reader (Hercules, CA, USA). The  

					percentage of radical scavenging activity was calculated as follows:  

					inhibition (%) = ((Acontrol – Asample)/ Acontrol) × 100, where Acontrol was the  

					absorbance of ABTS+ solution without the sample and Asample was the  

					absorbance of ABTS+ solution with the samples. The IC50 value  

					(µg/mL) of the sample was calculated using the linear regression  

					equation obtained by plotting the inhibition percentage with the sample  

					concentration. The experiment was conducted in triplicate.  

					Antibacterial activity of the ethanol extract of P. betle leaves was further  

					tested by analyzing the MIC against S mutans. A broth dilution method  

					was applied using a 96-U-bottom plate.14 A 100 µL of extract solution  

					prepared in ethanol was pipetted into the first column of the well. To all  

					other wells, 50 µL of Muller-Hinton broth was added. Inoculum of the  

					maximum 24 h old was adjusted to 0.5 McFarland turbidity standard  

					using a BioSan Den-1B. Bacterial suspension was prepared by adding  

					the inoculum to a 1:20 water: Tween 80 solution. Into each well was  

					pipetted 10 µL of the bacterial suspension. Serial dilution of the extract  

					solution was then performed by taking 50 µL of the extract solution  

					which was serially diluted in a descending concentration to obtain  

					different concentration points. The reaction mixture was incubated for  

					24 h at 37 °C. The negative control was prepared using the same  

					reaction mixture, but without the extract. The solvent toxicity was tested  

					using ethanol instead of the extract. The MIC was determined as the  

					lowest concentration of P. betle extract in which no obvious turbidity  

					was observed.  

					Discussion  

					Results and  

					Molecular docking analysis  

					Identification of bioactive compounds in P. betle L.  

					Nine bioactive compounds were identified from Piper betle L. leaves  

					through comprehensive screening of phytochemical databases,  

					including the Taiwan Traditional Chinese Medicine Database, IJAHdb,  

					and HERBALdb.11, 12 Structural verification and standardization were  

					performed using the PubChem database. The selected compounds  

					predominantly belong to the phenylpropanoid and methoxyphenol  

					classes, with one representative sesquiterpene, highlighting the  

					chemical diversity of P. betle.  

					Several compounds, such as eugenol, chavicol, and estragole, are well-  

					documented for their broad-spectrum antibacterial activity.19  

					Hydroxychavicol, a key constituent of P. betle extracts, possesses  

					antibacterial activity.20 Methyleugenol, acetyleugenol, and chavibetol  

					are structural analogs of eugenol, featuring modifications that may  

					influence their binding affinity and specificity toward microbial targets.  

					The inclusion of β-caryophyllene, a bicyclic sesquiterpene with a  

					hydrocarbon scaffold distinct from phenolic derivatives, contributes to  

					the structural diversity and offers an alternative pharmacophore for  

					potential interaction with the SrtA binding pocket.  

					Evaluation of DNA leakage  

					DNA leakage was analyzed using a previously reported method.15 S.  

					mutans cells were treated with 0, 25, 50, and 100 µL of P. betle ethanol  

					extract of 1.25 mg/mL, diluted into 10 mL solution with Muller-Hinton  

					broth. The mixture was incubated for 12 h. After incubation, the tubes  

					were centrifuged at 10000 rpm for 15 min. The supernatant was  

					collected and analyzed at 260 nm using a spectrophotometer. An OD of  

					1 refers to the leakage of 50 µg/mL of DNA.15 Blank solutions were  

					prepared using P. betle ethanol extract of each dilution without the  

					addition of S. mutans cells.  

					Evaluation of protein leakage  

					Protein leakage was analyzed using a Bradford assay based on a  

					previously reported method.16 S. mutants cells were treated with 0, 25,  

					50, and 100 µL of P. betle extract (1.25 mg/mL), and diluted into a 10  

					mL solution with Muller-Hinton broth. The mixture was incubated for  

					12 h. After incubation, the tubes were centrifuged at 10000 rpm. The  

					supernatant of each concentration point (50 µL) was mixed with the  

					Bradford reagent (150 µL), and then incubated in the dark for 10 min.  

					The absorbance was measured at 595 nm. Bovine serum albumin was  

					used to generate a standard curve for the determination of protein  

					content.  

					This curated library was used as the ligand dataset for subsequent virtual  

					screening against SrtA through molecular docking, ADMET prediction,  

					and MD simulation. Table 1 summarizes the compound names,  

					SMILES notations, and PubChem CIDs.  

					Table 1: Curated bioactive compounds from P. betle L.  

					No Compoun  

					SMILES  

					PubChem  

					CID  

					.

					d Name  

					Hydroxyc  

					havicol  

					Antioxidant activity assays  

					Determination of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical  

					scavenging activity  

					1

					C=CCC1=CC(=C(C=C1)O)O  

					C=CCC1=CC=C(C=C1)O  

					70775  

					2

					3

					Chavicol  

					68148  

					596375  

					The scavenging activity of the plant extract on DPPH radicals was  

					determined based on the reported method.17 Typically, in a flat bottom  

					96-well, plant extract of different concentrations (50 µL) were added  

					into the wells. DPPH solution in ethanol (0.6 mM, 80 µL) was added to  

					each well. The reaction mixture was mixed and incubated at 27 °C for  

					30 min at 250 RPM in a shaking incubator (Thermostar BMG Labtech).  

					The absorbance was measured at 520 nm using a BioRad iMark plate  

					reader (Hercules, CA, USA). The percentage of inhibition was  

					calculated as follows: inhibition (%) = ((Acontrol – Asample)/ Acontrol) × 100,  

					where Acontrol was the absorbance of DPPH solution without sample and  

					Asample was the absorbance of DPPH solution with the samples. Activity  

					was presented as an IC50 value, calculated by the linear regression  

					equation from the plot of inhibition percentage against plant extract  

					concentration. The experiment was conducted in triplicates. Result was  

					compared with positive control ascorbic acid.  

					Chavibeto COC1=C(C=C(C=C1)CC=C)O  

					l

					4

					5

					Eugenol  

					Methyleu  

					genol  

					COC1=C(C=CC(=C1)CC=C)O  

					COC1=C(C=C(C=C1)CC=C)OC  

					3314  

					7125  

					6

					Acetyleug CC(=O)OC1=C(C=C(C=C1)CC=  

					596380  

					enol  

					C)OC  

					7

					8

					Estragole  

					β-  

					Caryophy  

					llene  

					COC1=CC=C(C=C1)CC=C  

					C/C/1=C\CCC(=C)[C@H]2CC([  

					C@@H]2CC1)(C)C  

					8815  

					5281515  

					9

					Safrole  

					C=CCC1=CC2=C(C=C1)OCO2  

					5144  

					Determination of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)  

					(ABTS) radical scavenging activity  

					Molecular docking results  

					The scavenging activity of the plant extract on ABTS+ was determined  

					using previous method with slight modifications.18 The ABTS+ radicals  

					were generated by mixing ABTS solution (7 mM) and potassium  

					persulphate (2.45 mM), thereafter was incubated for 12-16 h in the dark  

					at ambient temperature. Before the reaction, the absorbance of the  

					ABTS+ solution was adjusted to around 0.700 ± 0.002 by diluting the  

					solution with phosphate buffered saline (10 mM, pH 7.4). For the assay,  

					the ABTS+ solution (180 µL) was reacted with the plant extract solution  

					of different concentrations (20 µL) in a flat bottomed 96-well. The  

					The binding affinity of P. betle L. bioactive compounds toward SrtA  

					was evaluated using molecular docking, with the LPXTG peptide as a  

					positive control to confirm correct pocket recognition. Lower (more  

					negative) S scores indicate stronger predicted binding, and poses with  

					RMSD_refine ≤ 2.0 Å were considered reliable.  

					The LPXTG peptide showed the strongest binding affinity, with  

					docking scores ranging from -7.60 to -7.63 kcal/mol and RMSD values  

					between 1.52 and 2.22 Å, forming multiple hydrogen bonds to Glu105,  

					Asp112, Ser116, and Thr180, and ionic interactions with Glu105,  
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					Glu108, and Arg197, consistent with specific recognition within the  

					SrtA active site.  

					estragole, and safrole were predicted to inhibit CYP1A2, indicating  

					potential metabolic interaction risks. None of the compounds were  

					CYP2C19, CYP2C9, CYP2D6, or CYP3A4 inhibitors, minimizing the  

					likelihood of broader drug–drug interactions.  

					Total clearance rates varied, with β-caryophyllene showing the highest  

					predicted clearance (log CL = 1.088 mL/min/kg) and safrole the lowest  

					(log CL = 0.116 mL/min/kg). These differences may influence the  

					plasma half-life and dosing frequency in vivo.  

					Toxicological predictions revealed that most compounds were non-  

					mutagenic in the AMES test and exhibited no hepatotoxicity.  

					Exceptions included chavibetol, eugenol, methyleugenol, estragole, and  

					safrole, all of which were flagged as potential AMES mutagens.  

					Additionally, safrole was predicted to exhibit hepatotoxicity,  

					warranting caution in its further development.  

					Among the P. betle compounds, acetyleugenol exhibited the best ligand  

					performance (S = –5.98 kcal/mol; RMSD = 0.88 Å), with π–H  

					interactions to Val168 and Ile199. Methyleugenol followed with a  

					docking score of –5.39 kcal/mol and interactions involving Val168 and  

					Ile199.  

					Estragole, eugenol, and chavibetol demonstrated moderate binding  

					scores (S ≈ -5.28 to -5.15 kcal/mol), dominated by hydrophobic contacts  

					with Val168 and Ile199. Hydroxychavicol scored slightly lower (S = -  

					4.89 kcal/mol), forming one hydrogen bond to Leu169, suggesting  

					possible steric hindrance in the hydrophobic pocket. The sesquiterpene  

					β-caryophyllene gave S = -5.37 to -5.10 kcal/mol with acceptable  

					RMSD values, consistent with hydrophobic accommodation without  

					polar contacts. Chavicol and safrole exhibited the weakest binding  

					profiles (S = -5.18 to -4.60 kcal/mol) with limited interaction with the  

					catalytic residues. Table 2 summarizes the detailed results, including  

					the best docking score, RMSD_refine, and interaction residues for each  

					compound.  

					MD simulation  

					MD simulations were performed using the CABS-flex 2.0. As a coarse-  

					grained, backbone-level approach, CABS-flex reports per residue.  

					RMSF as an indicator of local flexibility; it does not provide binding  

					thermodynamics, therefore RMSF trends are interpreted as modeled  

					flexibility changes and should be confirmed by all-atom MD where  

					needed. Analyses focused on the catalytic triad (His120, Cys184, and  

					Arg197) which are essential for enzymatic activity (Figure 2).  

					The LPXTG control peptide showed low RMSF at the catalytic residues  

					(His120 = 0.447 Å, Cys184 = 0.231 Å, and Arg197 = 0.395 Å),  

					consistent with a constrained active-site backbone. Among the tested  

					compounds, acetyleugenol demonstrated the closest match to the  

					control, lowering backbone motion at Cys184 (0.261 Å) and showing  

					moderate Arg197 (0.498 Å), whereas His120 remained more mobile  

					(0.788 Å). Methyleugenol showed lower fluctuations at His120 (0.484  

					Å) and Arg197 (0.376 Å), with a modestly higher Cys184 (0.675 Å),  

					indicating a residue-specific flexibility pattern rather than uniform  

					stabilization. Chavibetol, eugenol, and caryophyllene also displayed  

					moderate RMSF values (generally < 0.55 Å at key positions), whereas  

					hydroxychavicol and estragole showed higher RMSF values at Cys184  

					and Arg197, suggesting less constrained backbones in the catalytic  

					region within this model. Safrole exhibited a low RMSF at Cys184  

					(0.146 Å) and higher RMSF at Arg197 (0.430 Å) but is deprioritized  

					owing to the predicted safety liabilities from the ADMET screening.  

					Overall, the RMSF patterns are consistent with the docking-derived  

					poses that engage the catalytic region, nominating acetyleugenol and  

					methyleugenol as the most compelling candidates from a flexibility-  

					based perspective. A summary of the MD results is presented in Table  

					4.  

					Table 2: Docking results of bioactive compounds in Piper  

					betle L. with SrtA.  

					No  

					Compound  

					S Score  

					(kcal/mol)  

					-7.6327  

					-5.9821  

					-5.3857  

					-5.2069  

					-5.1521  

					-5.1475  

					-5.1156  

					-5.1022  

					-4.84354  

					-4.6639  

					RMSD (Å)  

					1

					2

					LPXTG  

					2.2189  

					0.8818  

					1.3882  

					0.8224  

					0.6793  

					2.8892  

					1.4538  

					1.5888  

					1.4659  

					1.4845  

					Acetyleugenol  

					Methyleugenol  

					Chavibetol  

					Safrole  

					3

					4

					5

					6

					Eugenol  

					7

					Estragole  

					8

					β-Caryophyllene  

					Hydroxychavicol  

					Chavicol  

					9

					10  

					ADMET and drug-likeness prediction  

					The pharmacokinetic and toxicity profiles of nine bioactive compounds  

					from P. betle L. were assessed using the SwissADME and pkCSM  

					platforms. The evaluation encompassed key parameters related to  

					ADMET and drug-likeness using Lipinski’s Rule of Five.  

					All compounds met Lipinski’s Rule criteria, except β-caryophyllene,  

					which violated the lipophilicity parameter (logP > 5). This indicates  

					good oral bioavailability potential for most compounds, supporting  

					their viability as drug candidates.  

					HIA was high across all compounds, with values exceeding 91%,  

					indicating favorable oral absorption. Caco-2 permeability values (log  

					Papp) ranged from 1.41 to 1.78, suggesting moderate-to-high intestinal  

					epithelial permeability. None of the compounds were predicted to be  

					substrates or inhibitors of P-glycoprotein (P-gp), thereby reducing the  

					risk of efflux-mediated bioavailability reduction.  

					All compounds demonstrated moderate BBB permeability, with β-  

					caryophyllene showing the highest value (log BB = 0.733), indicating  

					potential central nervous system (CNS) penetration. VDss was variable,  

					with β-caryophyllene and hydroxychavicol showing higher tissue  

					distribution (log VDss > 0.4), whereas acetyleugenol had the lowest (-  

					0.007), suggesting limited tissue dispersion.  

					Antibacterial activity of P. betle extract  

					Antibacterial activity of P. betle leaf extract was tested against S.  

					mutans by measuring the inhibition zone diameter. As shown in Figure  

					3, S. mutans was sensitive against P. betle extract with an inhibition  

					diameter zone of 1.34 ± 0.11 cm.  

					The MIC and MBC assays were included in this study to determine the  

					lowest concentration of P. betle extract that inhibited and killed the  

					bacterium, respectively. The results are presented in Table 5.  

					A DNA leakage assay was conducted to further evaluate the mechanism  

					of the observed antibacterial activity against S. mutants. The graphs in  

					Figure 4 represent the amount of DNA (A) and protein (B) identified in  

					the supernatant of S. mutans following treatment with different  

					concentrations of P. betle extract. The OD reading at 260 nm  

					demonstrated the presence of DNA in the supernatant of S. mutans  

					following treatment with P. betle extract (Figure 4A). At each  

					concentration (0.05, 0.1, and 0.2 mg/mL), significant differences in  

					DNA leakage were observed between the negative control (only  

					ethanol) (p < 0.05) and the tested concentrations (p < 0.05). Notably,  

					the DNA leakage was found to be concentration dependent, with a  

					Most compounds were not predicted to inhibit major cytochrome P450  

					enzymes. However, chavicol, chavibetol, eugenol, methyleugenol,  
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					C


					D


					Figure 1: Docking Interaction of SrtA with LPXTG and Top Piper betle L compounds. 3D and 2D interactions diagrams of Srt A with  

					LPXTG (A), Acetyleugenol (B), Methyleugenol (C), and Chavibetol (D), showing key binding residues and interaction types. Interaction  

					types are illustrated to the accompanying legend.  
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					Table 3: ADMET screening of potential SrtA inhibitors from P. betle L  

					Absorption  

					Distribution  

					Metabolism  

					Excretion  

					Toxicity  

					CYP3A4  

					substrate;  

					CYP3A4  

					inhibitor;  

					CYP2D6  

					substrate;  

					CYP2D6 inhibitor  

					No; No; No; No  

					HIA (%);  

					Caco-2  

					permeability  

					(log Papp); P-  

					gp-substrate;  

					P-gp inhibitor  

					Lipinski’s  

					Rule  

					Compliance  

					BBB  

					Compound  

					permeability  

					(log BB);  

					VDss (log  

					L/kg)  

					Total  

					AMES  

					Clearance (log  

					mL/min/kg)  

					Toxicity;  

					Hepatotoxicity  

					Hydroxychavicol  

					Chavicol  

					0

					0

					0

					0

					0

					0

					0

					92.09; 1.676; 0.361; 0.477  

					No; No  

					0.206  

					0.257  

					0.28  

					No; No  

					No; No  

					Yes; No  

					Yes; No  

					Yes; No  

					No; No  

					Yes; No  

					No; No  

					Yes; Yes  

					93.41; 1.607; 0.476; 0.465  

					No; No  

					91.83; 1.497; 0.389; 0.203  

					No; No  

					92.04; 1.559; 0.374; 0.240  

					No; No  

					94.53; 1.528; 0.422; 0.264  

					No; No  

					94.75; 1.659; 0.401; -0.007  

					No; No  

					94.53; 1.410; 0.601; 0.401  

					No; No  

					94.84; 1.423; 0.733; 0.652  

					No; No  

					96.31; 1.784; 0.300; 0.283  

					No; No  

					No; No; No; No  

					No; No; No; No  

					No; No; No; No  

					No; No; No; No  

					No; No; No; No  

					No; No; No; No  

					No; No; No; No  

					No; No; No; No  

					Chavibetol  

					Eugenol  

					0.282  

					0.338  

					0.468  

					0.332  

					1.088  

					0.116  

					Methyleugenol  

					Acetyleugenol  

					Estragole  

					β-Caryophyllene  

					Safrole  

					1 (logP >5)  

					0

					Table 4: Molecular dynamics results of bioactive compounds in P. betle L. with SrtA  

					No  

					1

					Compound  

					LPXTG  

					RMSF_120  

					0.447  

					0.788  

					0.484  

					0.569  

					0.323  

					0.392  

					0.674  

					0.419  

					0.638  

					0.208  

					RMSF_184  

					0.231  

					0.261  

					0.675  

					0.377  

					0.146  

					0.384  

					0.456  

					0.421  

					0.474  

					0.289  

					RMSF_197  

					0.395  

					0.498  

					0.376  

					0.520  

					0.43  

					2

					Acetyleugenol  

					Methyleugenol  

					Chavibetol  

					Safrole  

					3

					4

					5

					6

					Eugenol  

					0.514  

					0.306  

					0.338  

					0.538  

					0.402  

					7

					Estragole  

					8

					β-Caryophyllene  

					Hydroxychavicol  

					Chavicol  

					9

					10  

					higher extract concentration giving rise to a higher amount of DNA,  

					indicating more pronounced leakage from S. mutans cells.  

					lower than that of Trolox (7.55 ± 0.08 µg/mL; p < 0.05), indicating a  

					stronger free-radical scavenging capacity. Similar observation was  

					reported by other researchers obtaining strong DPPH scavenging  

					activity for the ethanol extract of P. betle (3.48 µg/mL).21 Similarly, in  

					the ABTS assay, strong scavenging activity (9.31 ± 0.34 µg/mL) was  

					observed for P. betle extract as compared with Trolox (3.29 ± 0.03  

					µg/mL).  

					Similarly, the supernatant of S. mutans showed positive results when  

					tested with the Bradford reagent. As in the DNA test, the protein amount  

					analyzed was in accordance with the concentration of P. betle extract.  

					These results indicate that cell membrane damage caused intracellular  

					protein leakage into the extracellular environment.  

					Antioxidant activity of P. betle leaf extract  

					Molecular docking analysis  

					Radical scavenging activity of P. betle extract was determined using  

					DPPH and ABTS assays. Both assays were frequently used to evaluate  

					the antioxidant properties of plant extracts, which may contain  

					hydrophilic, lipophilic, and pigmented antioxidant compounds. Table 5  

					summarizes the results. In the DPPH assay, the P. betle ethanol extract  

					exhibited an IC₅₀ value of 6.49 ± 0.01 µg/mL, which was significantly  

					To effectively inhibit the SrtA enzyme, bioactive compounds from P.  

					betle L. should exhibit favorable interactions within the catalytic region  

					relative to reference ligands, the LPXTG peptide, acknowledging the  

					comparative limitations of the docking scores. Computational docking  

					analysis identified several promising inhibitors with low RMSD values,  

					indicating consistent and convergent binding poses within the SrtA  
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					Figure 2: Root Mean Square Fluctuation (RMSF) profiles of Sortase A (SrtA) backbone residues during molecular dynamics  

					simulations using CABS-flex. (A) SrtA bound to LPXTG motif; (B) SrtA bound to acetyleugenol; (C) SrtA bound to methyleugenol;  

					(D) SrtA bound to chavibetol. The plots represent residue-wise backbone flexibility, where higher RMSF values indicate greater  

					structural fluctuations. Binding of Piper betle derivatives results in different dynamic behaviors compared to the control.  

					Figure 3: Inhibition zone of P. betle ethanol extract against S. mutans.‡  

					‡Zone diameter was determined by the agar disc diffusion method at 0.5 McFarland turbidity standard after 24 h incubation time at 37  

					C. A cork borer set No. 2 was used for the well.  

					Figure 4: The DNA (A) and protein leakage from S. mutans in the presence of P. betle extract. DNA amount was measured based on  

					OD at 260 nm (OD = 1 equivalent to 50 µg/mL of DNA).  
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					active site. The best-docking molecules share a common allylbenzene  

					scaffold with an aromatic ring and polar functional groups that facilitate  

					an optimal interaction with SrtA.  

					All compounds, except for β-caryophyllene, fully complied with  

					Lipinski’s Rule of Five, indicating favorable oral bioavailability and  

					drug-like properties. While β-caryophyllene exceeded the optimal  

					lipophilicity threshold (logP > 5), it still exhibited high predicted  

					intestinal absorption. All compounds consistently showed excellent  

					intestinal absorption (>91%) and moderate-to-high Caco-2  

					permeability, supporting their potential for oral delivery. Furthermore,  

					none were predicted to interact with P-glycoprotein (P-gp), thus  

					alleviating concerns regarding efflux-related bioavailability issues.  

					Predicted BBB permeability varied among the compounds. β-  

					Caryophyllene exhibited the highest BBB penetration potential,  

					suggesting possible applications in CNS targeting; it also raised  

					concerns about off-target effects. In contrast, acetyleugenol showed low  

					BBB permeability, making it suitable for treating non-CNS infections  

					while minimizing CNS exposure.  

					Metabolic interaction profiles revealed that six compounds—chavicol,  

					chavibetol, eugenol, methyleugenol, estragole, and safrole—may  

					inhibit the cytochrome P450 isoenzyme CYP1A2. Because CYP1A2 is  

					responsible for metabolizing approximately 9% of clinically used  

					drugs, including certain antidepressants and bronchodilators, this raises  

					concerns regarding potential drug-drug interactions. Conversely,  

					hydroxychavicol, acetyleugenol, and β-caryophyllene were not  

					predicted to inhibit any major CYP isoforms, suggesting a reduced risk  

					of metabolic interference and making them more suitable for further  

					development, particularly in polypharmacy settings. Clearance  

					predictions showed moderate variability among the compounds. β-  

					Caryophyllene exhibited the highest clearance rate, indicating rapid  

					systemic elimination, which may require more frequent dosing. Safrole  

					demonstrated lower clearance, potentially leading to prolonged  

					systemic exposure and increasing safety concerns. Integrating these  

					findings with previous molecular docking results revealed that  

					acetyleugenol was the most promising candidate, with the highest  

					binding affinity to SrtA (S score = -5.98 kcal/mol) and excellent  

					ADMET characteristics. Hydroxychavicol also showed a strong safety  

					profile with no predicted toxicity, although its binding affinity was  

					lower (S score = -4.84 kcal/mol), making it a good candidate for  

					optimization. β-Caryophyllene, while lacking polar functional groups,  

					maintains good absorption but has high clearance and BBB  

					permeability, which may limit its systemic use. Methyleugenol, despite  

					a strong binding affinity (S score = -5.39 kcal/mol), faces challenges  

					owing to predicted mutagenicity and CYP1A2 inhibition. Safrole, while  

					well absorbed, has significant safety liabilities owing to mutagenic and  

					Eugenol (allyl-2-methoxyphenol) has an aromatic ring, an allyl tail, a  

					free phenolic hydroxyl group (–OH), and a methoxy group (–OCH₃).  

					Docking simulations showed that the benzene rings fit into a  

					hydrophobic pocket in SrtA, forming π-stacking interactions with  

					aromatic amino acids. Meanwhile, the phenolic -OH is positioned to  

					form a hydrogen bond with an active-site residue, mimicking the  

					interactions observed with natural peptide substrate of the enzyme.  

					Methyleugenol, which is structurally similar to eugenol but with a  

					methoxy group replacing the hydroxyl group, is also predicted to bind  

					favorably to SrtA. Although the methoxy group is a weaker hydrogen  

					bond acceptor, it can still contribute to polar contacts, whereas the rest  

					of the scaffold engages in van der Waals interactions within the SrtA  

					binding cleft. Acetyleugenol, an acetylated derivative of eugenol, is  

					predicted to form additional favorable contacts with SrtA. The ester  

					carbonyl group act as a hydrogen bond acceptor, while the aromatic and  

					alkene moieties preserve the hydrophobic interactions.  

					Eugenol, methyleugenol, and acetyleugenol exhibited strong binding to  

					the SrtA enzyme, demonstrating that an aromatic ring with an allyl side  

					chain for hydrophobic anchoring, combined with at least one polar  

					substituent capable of hydrogen bonding, constitutes an effective  

					pharmacophore for SrtA engagement. Their significantly more negative  

					docking scores relative to less functionalized analogs highlight the  

					critical role of these functional groups in enhancing binding affinity.  

					Phenylpropanoids from P. betle L. bearing aromatic hydroxyl  

					substituents exhibited favorable predicted affinities, albeit slightly  

					lower than those of the eugenol derivatives. Hydroxychavicol and  

					chavibetol, which possess free phenolic –OH groups, could establish  

					hydrogen bonds within the catalytic pocket in a manner comparable  

					with that of eugenol. Although hydroxychavicol contains two hydroxyl  

					groups, its less favorable docking score suggests suboptimal orientation  

					or spatial positioning of these polar interactions relative to key residues.  

					Nevertheless, its performance surpassed that of the fully hydrophobic  

					analogs, underscoring the critical contribution of phenolic functionality  

					to SrtA recognition and binding stability.  

					Phenylpropanoids from P. betle L. containing aromatic hydroxyl  

					groups also showed favorable docking affinities, although slightly  

					lower than eugenol derivatives. Compounds such as hydroxychavicol  

					and chavibetol, each possessing free phenolic –OH groups, form  

					hydrogen bonds with the enzyme similarly to eugenol.  

					Hydroxychavicol, which has two –OH groups, has a lower docking  

					score, suggesting that the spatial orientation of these groups within the  

					binding site may be suboptimal. Nevertheless, it outperforms fully  

					hydrophobic analogs, underscoring the importance of phenolic  

					hydroxyl functionalities in SrtA binding. Chavibetol, with one –OH and  

					one –OCH₃ group, has a docking score comparable with eugenol,  

					indicating good accommodation of these substituents by the binding  

					pocket. Chavicol, the simplest phenolic with a single hydroxyl group,  

					demonstrates moderate binding affinity owing to aromatic interactions  

					but lacks additional polar substituents to further enhance binding.  

					Overall, phenolic compounds with at least one free hydroxyl group on  

					the benzene ring tended to improve SrtA binding, and additional small  

					polar substituents may further enhance affinity. In contrast, more  

					hydrophobic molecules or those with single, less interactive  

					substituents show weak binding to SrtA. For instance, estragole lacks a  

					phenolic –OH group and relies predominantly on van der Waals forces,  

					resulting in lower docking scores than eugenol. Safrole also  

					demonstrates weak binding attributed to the inability of its  

					methylenedioxy ring system to form hydrogen bonds. β-Caryophyllene,  

					a non-polar hydrocarbon, is the weakest binder, interacting solely  

					through dispersion forces and exhibiting a flexible, less stable docking  

					pose. These findings indicate that successful SrtA inhibition requires  

					not only favorable steric complementarity but also key interactions,  

					such as hydrogen bonding, within the catalytic pocket.  

					hepatotoxic  

					potential.  

					In  

					conclusion,  

					acetyleugenol  

					and  

					hydroxychavicol are the best candidates for further study, whereas other  

					compounds require structural modifications to address safety concerns.  

					To further investigate the dynamic behavior and stability of the SrtA–  

					ligand complexes identified through molecular docking, we conducted  

					MD simulations using the CABS-flex 2.0 coarse-grained modeling  

					platform. This approach assessed the impact of ligand binding on the  

					conformational flexibility of SrtA by analyzing the RMSF profiles of  

					all residues, with a special focus on the catalytic triad residues His120,  

					Cys184, and Arg197. Low RMSF values indicate decreased atomic  

					fluctuations and enhanced local stability, suggesting the restrained  

					dynamics of key residues and potential inhibitory effects.  

					The RMSF profile of SrtA in complex with the natural substrate analog  

					LPXTG showed typical flexibility in loop regions near residues Ala70,  

					Ala105–115, Ala130, and Ala165–175, consistent with an active  

					enzyme conformation. The catalytic triad residues exhibited low RMSF  

					values (His120 = 0.447 Å, Cys184 = 0.231 Å, and Arg197 = 0.395 Å),  

					indicating a stable active site environment.  

					Among P. betle L. compounds, acetyleugenol significantly stabilized  

					Cys184 (RMSF = 0.261 Å) and moderately stabilized Arg197 (RMSF  

					= 0.498 Å), resembling the LPXTG control complex. His120 was more  

					flexible (RMSF = 0.788 Å); however, the observed decrease in  

					flexibility and enhanced stability at Cys184 and Arg197 suggests that  

					acetyleugenol may interact with the catalytic site in a manner consistent  

					with the reference substrate pose. Chavicol demonstrated strong  

					stabilization across the catalytic triad (His120 = 0.208 Å, Cys184 =  

					0.289 Å, and Arg197 = 0.402 Å), suggesting that despite a moderate  

					docking score, it can restrict enzymatic dynamics. Safrole had the  

					lowest RMSF for Cys184 (0.146 Å) and stabilized His120 (0.323 Å),  

					Assessment of the properties of ADMET is a crucial step in early-stage  

					drug discovery. This process enables the selection of compounds that  

					exhibit optimal pharmacokinetic behavior and minimal safety concerns.  

					Nine bioactive compounds derived from P. betle L. were evaluated  

					using the pkCSM predictive platform.  
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					though its known mutagenic and hepatotoxic properties limit its  

					potential use. Methyleugenol stabilized His120 (0.484 Å) and Arg197  

					(0.376 Å) but exhibited increased flexibility at Cys184 (0.675 Å), which  

					may compromise the inhibitory efficacy. Eugenol, chavibetol, and β-  

					caryophyllene showed moderate stabilization effects with RMSF values  

					ranging from 0.3 to 0.6 Å, with β-caryophyllene notably stabilizing  

					Arg197 (0.338 Å), indicating partial stabilization of the catalytic site.  

					Conversely, estragole and hydroxychavicol increased the flexibility of  

					critical residues His120 and Cys184, indicating weaker binding and  

					docking affinities. This comprehensive in silico study integrates  

					molecular docking, ADMET profiling, and MD simulations to identify  

					several promising Staphylococcus aureus SrtA inhibitors from the  

					bioactive compounds in Piper betle L. Among these, acetyleugenol  

					emerged as the most compelling candidate, demonstrating strong  

					docking affinity, favorable pharmacokinetic properties, and minimal  

					safety concerns. MD simulations further supported its potential by  

					showing significant stabilization of the crucial catalytic residue Cys184,  

					which is essential for enzymatic function.  

					agents with potential applications in combating resistant S. aureus  

					infections.  
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