Potential Therapeutic Effects of Flavonoid-Rich Extract of <i>Carica Papaya<i> Against Inflammation, Pain, and Pyrexia in Experimental Animals

Main Article Content

Abdirasak Sharif Ali
Yahye Ahmed Nageye
Kizito E. Bello

Abstract

Most diseases has deleterious clinical presentations that are highly discomforting to the patients, often time the treatment and management of these symptoms with known drugs comes with adverse side effects, hence the need for a natural remedy. This study explored the potential therapeutic benefits of a flavonoid-rich extract from Carica papaya (FRECP) on experimental models to study the ant-inflammation, anti-fever and pain relief efficacy. The anti-inflammatory effect was studied using the carrageenan-induced paw oedemamodel. Acetic acid-induced writhing and tail immersion models were utilised for the test for analgesia, whereas Brewer’s yeast-induced and dinitrophenol models were used for the antipyretic study. Each of the 5 investigations involved the random allocation of thirty (30) albino rats into 5 groups, each consisting of 6 animals. Groups 1 and 5 were given distilled water and the conventional medication, whereas groups 2 to 4 received 100, 200, and 400 mg/kg of oral FRECP in each research. The study's results indicated that the observed advantages, especially at the dosage of 400 mg/kg, indicate that the flavonoid content of FRECP hinders crucial enzymes that play a role in inflammation and the production of prostaglandins and decrease discomfort, and pyrexia in a manner that depended on both the dosage and time of administration (p<0.05). We determined that the flavonoid-rich extract of Carica papaya has pharmacological effects on inflammation, pain, and fever.

Article Details

How to Cite
Ali, A. S., Nageye, Y. A., & Bello, K. E. (2024). Potential Therapeutic Effects of Flavonoid-Rich Extract of <i>Carica Papaya<i> Against Inflammation, Pain, and Pyrexia in Experimental Animals. Tropical Journal of Natural Product Research (TJNPR), 8(8), 8138–8143. https://doi.org/10.26538/tjnpr/v8i8.33
Section
Articles

References

Chen L, Huidan D, Hengmin C, Jing F, Zhical Z, Junliang D. Inflammatory responses and inflammation-associated diseases in organs, Oncotarget, 2018; 9 (6):7204–7218.

Usman H, Osuji JC. Phytochemical and in vitro antimicrobial assay of the leaf extract of Newbouldia laeves. Afr J Tradit, Compt Altern Med. 2008;4(4):32-45

Khalua RK, Mondal R, Tewari S. Comparative evaluation of antiinflammatory activities of three Indian medicinal plants (Alstonia scholaris Linn, Swertia chirata, Swietenia macrophylla Linn.). Pharma Innov J. 2019; 8 (8), 396–400.

Figus FA, Piga M, Azzolin I, McConnell R., Iagnocco, AJAR. Rheumatoid arthritis: extra-articular manifestations and comorbidities. Autoimmun Rev. 2021; 20 (4), 102776. Doi: 10.1016/j.autrev.2021.102776

International association for the study of pain; nhttp://www.iasp-pain.org/ Taxonomy. Accessed May 19, 2016.

Cole EB. Pain management: classifying, understanding and treating pain, hospital physician, 2002; p. 23-30.

Ezeja MI, Ezeigbo II, Madubuike KG. Analgesic activity of the methanolic seed extract of Buchholzia corlacea. Res J. Pharm Bio. & Chem Sci. 2011; 2(1):187-193.

Kumar DB, Rajendar RV, Devi SM, Chandrashekar B. Antipyretic activity of whole plant of Lepidagathis cristata Willd. in brewer’s yeast-induced hyperpyrexia rat. Int J Res. in Pharm & Pharmthera; 2012; 1(1):14-17.

Paschapur SM, Patil S, Patil RS, Kumar R, Patil MB. Evaluation of the analgesic and antipyretic activities of ethanolic extract of male flowers (inflorescences) of Borassus Flabellifer L. (Arecaceae). Int J Pharm and Pharm Sci. 2009; 1(2):98-106.

Almgeer UM, Muhammad NM, Hafeez UK, Safirah M, Muhammad NHM, Taseer A. Evaluation of anti-inflammatory, analgesic and antipyretic activities of Thymus serphyllum Linn. In mice. Acta Poloniae Pharm; 2015; 72(1):113-118.

Baars EW, Hamre H.J. Whole medical systems versus the system of conventional Biomedicine: a critical, narrative review of similarities, differences, and factors that promote the integration process, Evid. Based Compl. Alternat. Med. 2017;(2017): 2014–2023.

Al-snafi AE. Pharmacology & Toxicology Therapeutic properties of medicinal plants: a review, Int. J. Pharmacol. Toxicol. 2015; 5 (3):177–192.

Kurmukov AG, Phytochemistry of medicinal plants, Med. Plants Cent. Asia Uzb. Kyrg.2013; 1 (6):13–14.

Lahlou M. The success of natural products in drug discovery. Pharmacology and Pharmacy, 2013; 4:17-31

Afolayan AJ. Extracts from the shoots of Arctotis artotoides inhibit the growth of bacteria and fungi. Pharm. Biol. 2003; 41: 22-25.

Winter CA, Risley EA, Nuss GW. Carrageenan-induced oedemain the hind limb paw of the rat as an assay for anti-inflammatory Drugs Proc Soc Expt Biol Med, 1962; 111: 544–547.

Singh S, Majumbar DK. Analgesic activity of Ocimum sanctum and its possible mechanism of action. Int. J. Pharmacog., 1995; 33(3): 188-192.

Akuodor GC, Anyalewechi NA, Udoh FV, IkoroNwakaego C, Akpan JL, Gwotmut MD T.C. et al. Pharmacological evaluation of verbena hastata leaf extract in the relief of pain and fever. Adv. Pharmacol. Toxicol., 2011; 12(3): 1-8.

Ramabadran K, Bansinath M, Turndorf H, Puig MM. Tail immersion test for the evaluation of a nociceptive reaction in mice. Methodological considerations. J. Pharm. Meth, 1989; 21(1): 21-31.

Akuodor GC, Essien AD, Udia PM, David-Oku E., Chilaka KC, Asika EC. Analgesic, anti-inflammatory and antipyretic potential of the stem bark extract of Stachytarpheta indica. Brit. J. Pharmacol. Toxicol., 2015; 6(1): 16-21.

Semis HS, Gur C, Ileriturk M, Kaynar O, Kandemir FM. Investigation of the anti-inflammatory effects of caffeic acid phenethyl ester in a model of λ-Carrageenan–induced paw oedema in rats. Hum Exp Toxicol. 2021;40(12_suppl):S721-S738. doi:10.1177/09603271211054436/ASSET/IMAGES/LARGE/10.1177_09603271211054436-FIG12.JPEG.

Essien AD, Akuodor GC, EssienEdidara A, Asika EC, Chilaka KC, Nwadum SK. Evaluation of antipyretic potential of the ethanolic leaf extract of Salacia lehmbachiiLoes. Asn J. Med. Sci., 2015; 7(2): 22-25.

Okokon JE, Nwafor PA. Antiinflammatory, Analgesic and Antipyretic activities of ethanolic root extract of Croton zambesicus. Pak. J. Pharm. Sci.,2010; 23(4): 385-392.

Olela B. Mbaria J, Wachira T, Moriasi G., Acute oral toxicity and antiinflammatory and analgesic effects of aqueous and methanolic stem bark extracts of Piliostigma thonningii (Schumach.). Evid Based Compt Alter Med. 2020 Aug6; 2020:5651390. Doi:10.1155/2020/5651390.

Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017, Lanc Gast. Hepatol. 2020; 5 (1):17–30.

Sibille KT, Steingrimstdottir OA, Fillingim RB, Stubhaug A, Schirmer H, Chen H. Investigating the burden of Chronic pain: an inflammatory and metabolic composite, Pain Res. Manag. 2016 (2016).

Felson DT, Safety of nonsteroidal antiinflammatory drugs, N. Engl. J. Med. 2016. 29;375(26):2595-6.

Harirforoosh S, Asghar W, Jamali F, Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications, J. Pharm. Pharmaceut. Sci. 2013; 16 (5):821–847.

Sylvester J, Tutorial 405 nonsteroidal anti-inflammatory drugs, Anesth. Tutor. Week (June) (2019) 1–5.

Fokunang C, Overview of non-steroidal anti-inflammatory drugs (NSAIDs) in resource limited countries, MOJ Toxicol 4 (1) (2018) 5–13.

Nasri H, Shirzad H, Toxicity and safety of medicinal plants, J. Herb. Med. Pharm.2013; 2 (2):21–22.

Azab A, Nassar A, Azab AN, Anti-inflammatory activity of natural products, Mol, 2016; 21(10):1321.

Samriti F, Sharma S, Sati B, Pathak AK. Comparative analysis of analgesic and anti-inflammatory activity of bark and leaves of Acacia ferruginea DC. Beni-Suef Univ J Bas Appl Sci 2016; 5: 70–78.

Shoaib M, Shah SWA, Ali N. Scientific investigation of crude alkaloids from medicinal plants for the management of pain. BMC Complement Altern Med. 2016;16(1):1-8. doi:10.1186/S12906-016-1157-2/TABLES/2.

Crunkhorn P, Meacock S. Mediators of the inflammation induced in the rat paw by carrageenin. Br J Pharmacol. 1971;42(3):392e402.

DiRosa M, Willoughby DA. Screens for anti-inflammatory drugs. J Pharm Pharmacol. 1971; 23:297e298.

Younis T, Khan MR, Sajid M, Majid M, Zahra Z, Shah NA. Fraxinus xanthoxyloides leaves reduced the level of inflammatory mediators during in vitro and in vivo studies. BMC Compt Altern Med. 2016;16(1):1-16. doi:10.1186/S12906-016-1189-7/FIGURES/4

Semis HS, Gur C, Ileriturk M, Kaynar O, Kandemir FM. Investigation of the anti-inflammatory effects of caffeic acid phenethyl ester in a model of λ-Carrageenan–induced paw oedema in rats. Hum Exp Toxicol. 2021;40(12_suppl):S721-S738.

doi:10.1177/09603271211054436/ASSET/IMAGES/LARGE/10.1177_09603271211054436-FIG12.JPEG

Donkor K, Stephen A, Jerry A, Nutifafa T, Nil OM, Laud KO. Analgesic and antiinflammatory activities of Asena, a herbal for treatment of athritis, using rodent models. Med Aro Plnt Res J. 2013;1(2):20e29.

Arendt-Nielsen L, Egsgaard LL, Petersen KK. Evidence for a central mode of action for etoricoxib (COX-2 inhibitor) in patients with painful knee osteoarthritis. Pain. 2016;157(8):1634-1644. doi:10.1097/J.PAIN.0000000000000562

Sohail R, Mathew M, Patel KK. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus. 2023;15(4). doi:10.7759/CUREUS.37080

Sana T, Qayyum S, Jabeen A. Isolation and characterization of anti-inflammatory and anti-proliferative compound, for B-cell Non-Hodgkin lymphoma, from Nyctanthes arbor-tristis Linn. J Ethnopharmacol. 2022;293:115267. doi:10.1016/J.JEP.2022.115267

Rege MG, Ayanwuyi LO, Zezi AU, Odoma S. Anti-nociceptive, anti-inflammatory and possible mechanism of anti-nociceptive action of methanol leaf extract of Nymphaea lotus Linn (Nymphaeceae). J Tradit Compt Med. 2021;11(2):123-129. doi:10.1016/J.JTCME.2020.02.010

Al-Mansoori L, Al-Jaber H, Prince MS, Elrayess MA. Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance. Inflamm. 2022;45(1):31-44. doi:10.1007/S10753-021-01559-Z/FIGURES/4

Liu C, Chu D, Kalantar-Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. Advc Sci. 2021;8(15):2004433. doi:10.1002/ADVS.202004433