Aerial Parts of Selaginella doederleinii Hieron as an Anticancer Agent against Luminal A Breast Cancer (T47D) Cell Line

Authors

  • Honesty N. Pinanti Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia
  • Yuyun I. Christina Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia
  • Muhaimin Rifa’i Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia
  • Nashi Widodo Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia
  • Muhammad S. Djati Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia

DOI:

https://doi.org/10.26538/tjnpr/v8i6.18

Keywords:

T47D cell line, Selaginella doederleinii Hieron, luminal A, breast cancer, Anticancer

Abstract

Luminal A is the most widely diagnosed breast cancer subtype worldwide. The existing luminal A therapy faces some challenges, such as drug resistance and toxicity. Therefore, new therapeutic approaches are urgently required. The application of medicinal plants, particularly aerial parts of Selaginella doederleinii Hieron, becomes an attempting strategy due to its abundant bioactive compounds that can target numerous signaling pathways. Therefore, this research aimed to investigate the anticancer potential and mechanism of S. doederleinii extract and fractions on luminal A breast cancer (T47D) cells. WST-1 assay was used to examine the cytotoxicity of the ethanolic extract and several fractions of S. doederleinii. Apoptosis assay, cell cycle assay, aerobic glycolysis inhibition assays, and analysis of oncogenic protein expression were conducted to investigate the anticancer effect of the most selective fraction. This study demonstrated that the ethyl acetate (EA) fraction exhibited the strongest cytotoxicity and selectivity against the T47D cells (IC50= 19.31 µg/mL; Selectivity Index (SI) = 18.94). EA fraction significantly induced apoptosis, impeded the cell cycle, and diminished glucose consumption and lactate secretion, mostly starting at the concentration 2xIC50in 48 h. The EA fraction also significantly downregulated the expression of p-mTOR, c-Myc, and Hexokinase 2 (HK2) proteins in modulating apoptosis, cell cycle, and aerobic glycolysis. However, HIF-1α inhibition might also contribute to the anticancer activity of the EA fraction. In conclusion, the ethyl acetate fraction of S. doederleinii exerted considerable anticancer effects against T47D cells. The fraction can be further developed to cure luminal A patients through more intensive studies.

         Views | PDF Download | EPUB Download: 201 / 77 / 8

Author Biographies

Yuyun I. Christina, Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia

Dewan Jamu East Java Region, Malang, 65145, Indonesia

Muhaimin Rifa’i, Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia

Dewan Jamu East Java Region, Malang, 65145, Indonesia

Nashi Widodo, Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia

Dewan Jamu East Java Region, Malang, 65145, Indonesia

Muhammad S. Djati, Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia

Dewan Jamu East Java Region, Malang, 65145, Indonesia

References

Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022; 95(1130):7–9.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3):209–249.

Anderson BO, Jakesz R. Breast cancer issues in developing countries: An overview of the breast health global initiative. World J Surg. 2008; 32(12):2578–2585.

Moo TA, Sanford R, Dang C, Morrow M. Overview of breast cancer therapy. PET Clin. 2018; 13(3): 339–354.

Al-Hadid KJ, Abu-Irmaileh B, Harb AA, Sharab A, Alhadid A. Acacia cyanophylla, Eucalyptus camaldulensis, and Pistacia atlantica ethanol extracts revealed cytotoxicity of breast cancer cell lines. Trop J Nat Prod Res. 2021; 5(10):1808–1815.

Huszno J, Kolosza Z. Molecular characteristics of breast cancer according to clinicopathological factors. Mol Clin Oncol. 2019; 11(2):192–200.

Cho YE, Singh TSK, Lee HC, Moon PG, Lee JE, Lee MH, Choi EC, Chen YJ, Kim SH, Baek MC. In-depth identification of pathways related to cisplatin-induced hepatotoxicity through an integrative method based on an informatics-assisted label-free protein quantitation and microarray gene expression approach. Mol Cell Proteomics. 2012; 11(1):1–17.

Anderson DH. Luminal A breast cancer resistance mechanisms and emerging treatments. In: Biological mechanisms and the advancing approaches to overcoming cancer drug resistance Vol. 12. (1st Ed.). Amsterdam: Elsevier Publishing; 2021. 1-22p.

Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA and Fabisiewicz A. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat. 2019; 173(3): 489–497.

Rodrigues R, Duarte D, Vale N. Drug repurposing in cancer therapy: Influence of patient’s genetic background in breast cancer treatment. Int J Mol Sci. 2022; 23(8): 1–14.

Zhao Y, Chard Dunmall LS, Cheng Z, Wang Y, Si L. Natural products targeting glycolysis in cancer. Front Pharmacol. 2022; 13: 1–18.

da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring potential natural compounds for the treatment of luminal breast cancer. Pharmaceuticals. 2023; 16(10): 1–40.

Setyawan AD. Traditionally utilization of Selaginella; field research and literature review. Nusantara Biosci. 2009; 1(3):146–158.

Yao H, Chen B, Zhang Y, Ou H, Li Y, Li S, Shi P, Lin X. Analysis of the total biflavonoids extract from Selaginella doederleinii by HPLC-QTOF-MS and its in vitro and in vivo anticancer effects. Molecules. 2017; 22(2): 1–17.

Liu H, Peng H, Ji Z, Zhao S, Zhang Y, Wu J, Fan J, Liao J. Reactive oxygen species-mediated mitochondrial dysfunction is involved in apoptosis in human nasopharyngeal carcinoma CNE cells induced by Selaginella doederleinii extract. J Ethnopharmacol. 2011; 138(1): 184–191.

Wang JZ, Li J, Zhao P, Ma WT, Feng XH, Chen KL. Antitumor activities of ethyl acetate extracts from Selaginella doederleinii Hieron in vitro and in vivo and its possible mechanism. Evid Based Complement Alternat Med. 2015; 2015: 1–9.

Xu D, Wang X, Huang D, Chen B, Lin X, Liu A, Huang J. Disclosing targets and pharmacological mechanisms of total bioflavonoids extracted from Selaginella doederleinii against non-small cell lung cancer by combination of network pharmacology and proteomics. J Ethnopharmacol. 2022; 286: 1–13.

Anggraini CY, Kusumaningtyas TA, Juniananda M, Winy D, Ningrum C, Febriansah R, Hermawansyah A. In silico and in vitro study Selaginella doederleinii herb extract as an antineoplastic on MCF-7 cells and formulation development of nano effervescent granule. Indones. J. Cancer Chemoprevention. 2023; 14(2):128–138.

Brad K, Zhang Y, Yang X, Wang T. Identification of chemical constituents of Selaginella doederleinii Hieron. Adv. Eng. Res. 2017; 143:455–459.

Djati MS, Christina YI, Rifa’i M. The combination of Elephantopus scaber and Sauropus androgynus promotes erythroid lineages and modulates follicle-stimulating hormone and luteinizing hormone levels in pregnant mice infected with Escherichia coli. Vet. World. 2021; 14(5):1398–1404.

Abu F, Mat Taib CN, Mohd Moklas MA, Mohd Akhir S. Antioxidant properties of crude extract, partition extract, and fermented medium of Dendrobium sabin flower. Evid Based Complement Alternat Med. 2017; 2017:1–9.

Ogunlakin AD, Ojo OA, Gyebi GA, Akinwumi IA, Adebodun GO, Ayokunle DI, Ambali OA, Ayeni PO, Awosola OE, Babatunde DE, Akintunde EA, Ajayi-Odoko OA, Dahunsi OS, Sonibare MA. Elemental evaluation, nutritional analysis, GC-MS analysis and ameliorative effects of Artocarpus communis J.R. Forst. & G. Forst. seeds’ phytoconstituents on metabolic syndrome via in silico approach. J Biomol Struct Dyn. 2023; 19:1–21.

Pethanasamy M, Suchitra MR, Sivasankaran SM, Surya S, Elanchezhiyan C, Thara JM. In vitro evaluation of the antioxidant and anticancer activities of chlorogenic acid on human colon cancer (HT-29) cells. Trop J Nat Prod Res. 2024; 8(3):6582–6588.

Nayim P, Sudhir K, Mbaveng AT, Kuete V, Sanjukta M. In vitro anticancer activity of Imperata cylindrica root’s extract toward human cervical cancer and identification of potential bioactive compounds. Biomed Res Int. 2021; 2021:1–12.

Hazekawa M, Nishinakagawa T, KawakuboYasukochi T, Nakashima M. Evaluation of IC50 levels immediately after treatment with anticancer reagents using a realtime cell monitoring device. Exp Ther Med. 2019; 18(4): 3197–3205.

Kaplánek R, Jakubek M, Rak J, Kejík Z, Havlík M, Dolenský B, Frydrych I, Hajdúch M, Kolář M, Bogdanová K, Králová J, Džubák P, Král V. Caffeine-hydrazones as anticancer agents with pronounced selectivity toward T-lymphoblastic leukaemia cells. Bioorg Chem. 2015; 60:19–29.

Gantenbein N, Bernhart E, Anders I, Golob-Schwarzl N, Krassnig S, Wodlej C, Brcic L, Lindenmann J, Fink-Neuboeck N, Gollowitsch F, Stacher-Priehse E, Asslaber M, Gogg-Kamerer M, Rolff J, Hoffmann J, Silvestri A, Regenbrecht C, Reinhard C, Pehserl AM, Pichler M, Sokolova O, Naumann M, Mitterer V, Pertschy B, Bergler H, Popper H, Sattler W, Haybaeck J. Influence of eukaryotic translation initiation factor 6 on non–small cell lung cancer development and progression. Eur J Cancer. 2018; 101:165–180.

Aghazadeh S, Yazdanparast R. Mycophenolic acid potentiates HER2-overexpressing SKBR3 breast cancer cell line to induce apoptosis: Involvement of AKT/FOXO1 and JAK2/STAT3 pathways. Apoptosis. 2016; 21(11):1302–1314.

Pumiputavon K, Chaowasku T, Saenjum C, Osathanunkul M, Wungsintaweekul B, Chawansuntati K, Wipasa J, Lithanatudom P. Cell cycle arrest and apoptosis induction by methanolic leaves extracts of four Annonaceae plants. BMC Complement Altern Med. 2017; 17(1): 1-11.

Li H, Xia T, Guan Y, Yu Y. Sevoflurane regulates glioma progression by CIRC_0002755/MIR-628-5P/MAGT1 axis. Cancer Manag Res. 2020; 12:5085–5098.

Christina YI, Rifa’i M, Widodo N, Djati MS. The combination of Elephantopus scaber and Phaleria macrocarpa leaves extract promotes anticancer activity via downregulation of ER-α, Nrf2 and PI3K/AKT/mTOR pathway. J Ayurveda Integr Med. 2022; 13(4):1–14.

Li S, Yao H, Zhao M, Li Y, Huang L, Lin X. Determination of seven biflavones of Selaginella doederleinii by high-performance liquid chromatography. Anal Lett. 2013; 46(18):2835–2845.

Sui Y, Li S, Shi P, Wu Y, Li Y, Chen W, Yao H, Lin XH. Ethyl acetate extract from Selaginella doederleinii Hieron inhibits the growth of human lung cancer cells A549 via caspase-dependent apoptosis pathway. J Ethnopharmacol. 2016; 190:261–271.

Muema FW, Liu Y, Zhang Y, Chen G, Guo M. Flavonoids from Selaginella doederleinii Hieron and their antioxidant and antiproliferative activities. Antioxidants. 2022; 11(6):1–16.

Gao J, Yu H, Guo W, Kong Y, Gu L, Li Q, Yang S, Zhang Y, Wang Y. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int. 2018; 18(1):1–9.

Gong J, Zhou S, Yang S. Vanillic acid suppresses HIF-1α expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int J Mol Sci. 2019; 20(3):1–18.

Li S, Wang X, Wang G, Shi P, Lin S, Xu D, Chen B, Liu A, Huang L, Lin X, Yao H. Ethyl acetate extract of Selaginella doederleinii Hieron induces cell autophagic death and apoptosis in colorectal cancer via PI3K-Akt-mTOR and AMPKα-signaling pathways. Front Pharmacol. 2020; 11:1–17.

Senese S, Lo YC, Huang D, Zangle TA, Gholkar AA, Robert L, Homet B, Ribas A, Summers MK, Teitell MA, Damoiseaux R, Torres JZ. Chemical dissection of the cell cycle: Probes for cell biology and anti-cancer drug development. Cell Death Dis. 2014; 5(10):1–11.

Lezaja A, Altmeyer M. Inherited DNA lesions determine G1 duration in the next cell cycle. Cell Cycle. 2018; 17(1):24–32.

Liberti M V, Locasale JW. The Warburg effect: How does it benefit cancer cells. Trends Biochem Sci. 2016; 41(3):211–218.

Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers (Basel). 2020; 12(8):1–34.

Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 2023; 24(3):1–34.

Pinanti HN, Christina YI, Widodo N, Djati MS. Molecular docking study of ethyl acetate fraction of Selaginella doederleinii Hieron extract as anti-Warburg effect in breast cancer. J. Pharm. Pharmacogn. Res. 2023; 11(2): 354–366.

Wang L, Zhao X, Fu J, Xu W, Yuan J. The role of tumour metabolism in cisplatin resistance. Front Mol Biosci. 2021; 8:1–13.

Talib WH, Alsayed AR, Barakat M, Abu-Taha MI, Mahmod AI. Targeting drug chemo-resistance in cancer using natural products. Biomedicines. 2021; 9(10):1–90.

Robinson GL, Dinsdale D, MacFarlane M, Cain K. Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL. Oncogene. 2012; 31(48):4996–5006.

Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, Rathi B, Kumar D. Oxidative stress in cancer cell metabolism. Antioxidants. 2021; 10(5):1–28.

Icard P, Fournel L, Wu Z, Alifano M and Lincet H. Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci. 2019; 44(6):490–501.

Magaway C, Kim E, Jacinto E. Targeting mTOR and metabolism in cancer: Lessons and innovations. Cells. 2019; 8(12):1–51.

Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res. 2012; 18(20):5546–5553.

Yuan Y, Zhang J, Cai L, Ding C, Wang X, Chen H, Wang X, Yan J, Lu J. Leptin induces cell proliferation and reduces cell apoptosis by activating c-Myc in cervical cancer. Oncol Rep. 2013; 29(6):2291–2296.

García-Gutiérrez L, Delgado MD, León J. Myc oncogene contributions to release of cell cycle brakes. Genes (Basel). 2019; 10(3):1-29.

Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011; 208(2):313–326.

Peng DJ, Wang J, Zhou JY, Wu GS. Role of the Akt/mTOR survival pathway in cisplatin resistance in ovarian cancer cells. Biochem Biophys Res Commun. 2010; 394(3):600–605.

Downloads

Published

2024-06-29

How to Cite

Pinanti, H. N., Christina, Y. I., Rifa’i, M., Widodo, N., & Djati, M. S. (2024). Aerial Parts of Selaginella doederleinii Hieron as an Anticancer Agent against Luminal A Breast Cancer (T47D) Cell Line. Tropical Journal of Natural Product Research (TJNPR), 8(6), 7452–7458. https://doi.org/10.26538/tjnpr/v8i6.18

Most read articles by the same author(s)