Enhancing Metabolic Parameters: The Impact of Porang Glucomannan on Body Weight, Intraperitoneal Fat, Fasting Blood Glucose, and GLUT-4 Levels in Rats Fed a High-Fat and High-Carbohydrate Diet

http://www.doi.org/10.26538/tjnpr/v7i6.20

Authors

  • Azizah H. Safitri Department of Biochemistry, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang 50112, Indonesia
  • Eni Widayati Department of Chemistry, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang 50112, Indonesia.
  • Nurina Tyagita Department of Biochemistry, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang 50112, Indonesia

Keywords:

Intraperitoneal Fat, Fasting Blood Glucose, GLUT-4, Porang, Glucomannan

Abstract

Porang glucomannan (GMP) can be fermented to produce various short-chain fatty acids, which are expected to enhance insulin sensitivity and improve GLUT-4 expression. This research aims to validate the effect of porang glucomannan supplementation on body weight, intraperitoneal fat, fasting blood glucose and GLUT-4 levels in rats fed with high-fat and high-carbohydrate (HFHC) diet. The research was carried out using a posttest-only control group design, with data collected from a sample size of 30 Sprague-Dawley rats divided into five groups, each consisting of five rats, namely normal, HFHC, GMP25, GMP50, and GMP100. Except for the normal group, the other four groups were fed HFHC diet for 21 days, followed by specific treatments for each group for 28 days. The parameters measured included body weight, intraperitoneal fat weight, fasting blood glucose and GLUT-4 levels. GMP100 group demonstrated the most favourable results in fasting blood glucose levels, GLUT-4 levels, and intraperitoneal fat weight. In contrast, GMP25 group exhibited the best outcome in terms of body weight. Porang glucomannan supplementation improved body weight, blood glucose levels, GLUT-4 levels, and intraperitoneal fat in rats on HFHC diet, with the most effective dose observed at 100 mg/200 gBW.

References

Hazarika A, Kalita H, Boruah DC, Kalita MC, Devi R. Pathophysiology of metabolic syndrome: The onset of natural recovery on withdrawal of a high-carbohydrate, highfat diet. Nutrition. 2016; 32(10):1081-1091.

Marbou WJ, Kuete V. Prevalence of metabolic syndrome and its components in Bamboutos Division’s adults, west region of Cameroon. Biomed Res Int. 2019; 2019:1-12.

Sigit FS, Tahapary DL, Trompet S, Sartono E, Willems van Dijk K, Rosendaal FR, De Mutsert R. The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: a cross-sectional analysis of two population-based studies. Diabetol Metab Syndr. 2020; 12:1- 11.

Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017; 11(8):215-225

Rojas E, Castro A, Manzano A, Suárez MK, Lameda V, Carrasquero R, Nava M, Bermudez V. Diagnostic criteria and management of metabolic syndrome: Evolution over time. Gac Méd Caracas. 2020; 128(4):480-504.

Nagasawa T, Kimura T, Yoshida A, Tsunekawa K, Araki O, Ushiki K, Ishigaki H, Shoho Y, Suda I, Hiramoto S, Murakami M. Konjac glucomannan attenuated triglyceride metabolism during rice gruel tolerance test. Nutrients. 2021; 13(7):2191.

Safitri AH, Tyagita N, Nasihun T. Porang glucomannan supplementation improves lipid profile in metabolic syndrome induced rats. J Nat Remedies. 2017; 17:131-143.

Fang Y, Ma J, Lei P, Wang L, Qu J, Zhao J, Liu F, Yan X, Wu W, Jin L, Ji H. Konjac glucomannan: an emerging speciality medical food to aid in the treatment of type 2 diabetes mellitus. Foods. 2023; 12(2):363.

Wardani NE, Subaidah WA, Muliasari H. Extraction and determination of glucomannan contents from porang tuber (Amorphophallus muelleri Blume) using DNS Method. Jurnal Sains dan Kesehatan. 2021; 3(3):383-391.

Gao T, Jiao Y, Liu Y, Li T, Wang Z, Wang D. Protective effects of konjac and inulin extracts on type 1 and type 2 diabetes. J Diabetes Res. 2019; 2019:1-12 .

Fatchiyah F, Nurmasari DA, Masruro N, Rohmah NR, Triprisila LF, Mulyati M, Yamada T, Ohta T. Level of mRNA insulin gene and blood glucose STZ-induced diabetic rat are improved by glucomannan of Amorphophallus muelleri Blume from East Java forest Indonesia. J. Tropical Life Sci. 2019; 24(9):163-9.

Jung CH, Choi KM. Impact of high-carbohydrate diet on metabolic parameters in patients with type 2 diabetes. Nutrients. 2017; 9(4):322.

Li Q, Liu C, Zhang S, Li R, Zhang Y, He P, Zhang Z, Liu M, Zhou C, Ye Z, Wu Q. Dietary carbohydrate intake and newonset hypertension: a nationwide cohort study in China. Hypertension. 2021; 78(2):422-30.

Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Frutos MJ, Galtier P, Gott D, Gundert‐Remy U, Lambré C, Leblanc JC. Re‐evaluation of konjac gum (E 425 i) and konjac glucomannan (E 425 ii) as food additives. Efsa J. 2017; 15(6): e04864.

Jayachandran M, Christudas S, Zheng X, Xu B. Dietary fiber konjac glucomannan exerts an antidiabetic effect via inhibiting lipid absorption and regulation of PPAR-γ and gut microbiome. Food Chemistry. 2023; 403:134336. DOI: 10.1016/j.foodchem.2022.134336. PMID: 36191423.

Świderska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, Śliwińska A. Role of PI3K/AKT pathway in insulin-mediated glucose uptake. Blood Glucose Levels. 2018; 5(1): 1-8.

Anggela, Harmayani E, Setyaningsih W, Wichienchot S. Prebiotic effect of porang oligo-glucomannan using faecal batch culture fermentation. Food Sci Technol. 2022; 42: e06321.

Soetoko AS, Cahyaningrum D, Ardiansyah F, Fatmawati D. Inulin from Dioscorea esculenta and Metformin in combination ameliorates metabolic syndrome in rats by altering short-chain fatty acids. Trop J Nat Prod Res. 2023; 7(2):2421-2426.

Eger M, Hussen J, Koy M, Dänicke S, Schuberth HJ, Breves G. Glucose transporter expression differs between bovine monocyte and macrophage subsets and is influenced by milk production. J Dairy Sci. 2016; 99(3):2276-87.

Sticka KD, Schnurr TM, Jerome SP, Dajles A, Reynolds AJ, Duffy LK, Knall CM, Dunlap KL. Exercise increases glucose transporter-4 levels in peripheral blood mononuclear cells. Med Sci Sports Exerc. 2018; 50(5):938.

Li MY, Feng GP, Wang H, Yang RL, Xu Z, Sun YM. Deacetylated konjac glucomannan is less effective in reducing dietary-induced hyperlipidemia and hepatic steatosis in C57BL/6 mice. J Agric Food Chem. 2017; 65(8):1556-65.

Behera SS, Ray RC. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol. 2016; 92: 942-56.

Kang Y, Li YU, Du Y, Guo L, Chen M, Huang X, Yang F, Hong J, Kong X. Konjaku flour reduces obesity in mice by modulating the composition of the gut microbiota. Int J Obes. 2019; 43(8):1631-43.

Published

2023-07-02

How to Cite

Safitri, A. H., Widayati, E., & Tyagita, N. (2023). Enhancing Metabolic Parameters: The Impact of Porang Glucomannan on Body Weight, Intraperitoneal Fat, Fasting Blood Glucose, and GLUT-4 Levels in Rats Fed a High-Fat and High-Carbohydrate Diet: http://www.doi.org/10.26538/tjnpr/v7i6.20. Tropical Journal of Natural Product Research (TJNPR), 7(6), 3198–3202. Retrieved from https://tjnpr.org/index.php/home/article/view/2104