
                               Trop J Nat Prod Res, January 2026; 10(1): 6990 - 6998                 ISSN 2616-0684 (Print) 

                                                                                                                                                 ISSN 2616-0692 (Electronic)  
 

6990 

 © 2026 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License 

 

Tropical Journal of Natural Product Research 
 

Available online at https://www.tjnpr.org 

Review Article 
 

Chemistry and Pharmacological Properties of Glycyrrhetinic Acid: A Review 
 

Eric Wei Chiang Chan1*, Siu Kuin Wong2, Hung Tuck Chan3  

 
1Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia. 
2School of Foundation Studies, Xiamen University Malaysia, Bandar Sunsuria, Sepang, Selangor, Malaysia.  
3Secretariat, International Society for Mangrove Ecosystems, University of the  Ryukyus, Okinawa, Japan 

 

Introduction  

In this article, glycyrrhetinic acid (GA) from the root of 

Glycyrrhiza glabra (licorice) is chosen as the compound for review. 

After describing the botany of G. glabra, the chemistry and 

pharmacological properties of GA notably hepatoprotective, 

neuroprotective, cardioprotective, and nephroprotective activities are 

highlighted. This is followed by description of other pharmacological 

activities, and concluding remarks on prospects and suggestions for 

further research of GA. The other pharmacological activities are those 

that are less often documented. Well-known properties such as anti-

cancer and anti-inflammatory activities are not included in this review.  

Glycyrrhiza glabra L. of the family Fabaceae is commonly known as 

licorice or liquorice.1-3 The plant is a herbaceous perennial, with stems 

0.5–1.5 m in height. Roots of G. glabra are stoloniferous. Leaves are 

pinnate bearing oblong-lanceolate or elliptic leaflets. Upper surfaces of 

the leaf blades are glabrescent or pilose while lower surfaces are densely 

scaly and pubescent on veins. Inflorescences of G. glabra are racemose 

with many small flowers bearing petals that are purple or pale blue in 

color (Figure 1). Fruits are oblong, flat, glabrous or sparsely hairy pods, 

containing dark green seeds.1-3 Other Glycyrrhiza species prescribed as 

licorice in the Chinese Pharmacopoeia are G. uralensis (flowers are 

purple, white or yellow) and G. inflata (flowers are purple or light 

purple).4 In traditional Chinese medicine (TCM), licorice has been used 

to strengthen the digestive system, eliminate phlegm, relieve coughing 

and alleviate pain.4,5 Chinese licorice formulations in the form of 

solution, tablet, and powder are used to treat inflammatory diseases. 

Some prescribed to treat bronchitis, colds, cough and respiratory 

infections have been patented.6  
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From the roots of Glycyrrhiza species (Figure 1), more than 20 

triterpenoids and 300 flavonoids have been reported.4 Most of these 

compounds possess bioactivities such as antitumor, antimicrobial, 

antiviral, anti-inflammatory, immunoregulatory, etc. The extract of 

licorice has been used for the treatment of gastric ulcers, liver diseases, 

Addisonʼs disease, allergies and many other diseases. Compounds in 

licorice possessing anti-inflammatory properties include triterpenoids 

such as GA and glycyrrhizinic acid (glycyrrhizin), and flavonoids such 

as licochalcones A−E, isoliquiritigenin, dehydroglyasperins C & D, 

echinatin, glabridin, licoricidin, isoangustone A and licorisoflavan A.5  

Licorice contains bioactive chemical constituents such as triterpenoids, 

flavonoids, isoflavonoids, stilbenoids and coumarins.7-9 The 

triterpenoids are GA, glycyrrhizin, liquiritic acid, and glycyrretol. 

Flavonoids, include liquirtin, liquiritigenin and neoliquiritin while 

isoflavonoids are glabridin, glabrone, glyzarin and galbrene. Coumarins 

are liqcoumarin and umbelliferone, while dihydrostilbenes are 

stilbenoids.  

 

  
Figure 1: Flowers (left) and root slices (right) of Glycyrrhiza 

glabra (licorice) 
 

Chemistry 

GA, a pentacyclic triterpenoid of the oleanane-type from licorice, has a 

molecular formula of C30H46O4 and a molecular weight of 470.7 

g/mol.9-11 Pentacyclic triterpenoids are natural compounds that have 

been extensively studied for their diverse medicinal and 
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pharmacological activities. GA is a good candidate for this study. Its 

chemical structure consists of a hydroxyl (−OH) group at C3, a keto or 

carbonyl moiety (=O) at C11, and a carboxylic acid (−COOH) group at 

C30 (Figure 2). The hydroxyl group at C3 is essential for preserving the 

cytotoxicity of GA.  GA consists of 18β-GA and 18α-GA (Figure 2).  

These are two stereoisomers and their chemical structures differ in the 

stereochemical feature at the junction of the D/E rings.13 18β-GA has a 

cis junction while 18α-GA has a trans junction at position 18. 18β-GA 

is (3β,18β)-3-hydroxy-11-oxoolean-12-en-30-oic acid or enoxolone 

while 18α-GA is (3β,18α)-3-hydroxy-11-oxoolean-12-en-29-oic acid.14 

GA, a triterpenoid aglycone, i.e. without the glycosyl group, is the 

major bioactive constituent of the root of G. glabra.10,12  

Using the HPTLC densitometric method, the content of GA and 

glycyrrhizin in the root of G. glabra was found to be 0.84% and 1.07%, 

respectively.15 Glycyrrhizin with a molecular formula of C42H62O16 and 

a molecular weight of 822.9 g/mol, is the main active compound in 

licorice root. GA is a derivative of glycyrrhizin formed by gut bacteria 

via hydrolysis. GA from the root of G. glabra was quantified as 0.65% 

using the TLC densitometric method.16 In the root of G. uralensis, the 

content of GA was reported to be 10.2 mg/g while that of glycyrrhizin 

was 7.5 times more.17  

 

 
Figure 2: Chemical structure of 18β-glycyrrhetinic acid with 

18α-glycyrrhetinic acid as inset 
 

Pharmacological Properties 

Reviews have reported that GA possesses diverse pharmacological 

propertie.18-21 Major pharmacological properties being anti-cancer, anti-

inflammatory, antibacterial, antiviral and antioxidant effects. In this 

article, the pharmacological activities and number of studies in brackets 

of GA reviewed are hepatoprotective (15), neuroprotective (15), 

cardioprotective (10) and nephroprotective (9) properties. Their 

activities are tabulated based on their effects, mechanisms and 

references as shown in Table 1.  

 

Hepatoprotective  

In the hepatoprotective studies, GA protected against liver injury and 

the mechanism  involved the inhibition of cytochrome P450 2E1 and its 

free radical scavenging (FRS) ability; 21 protected against chronic liver 

fibrosis in mice via up-regulation of nuclear factor E2-related protein 

(Nrf2);22 protected against chronic liver fibrosis in mice via up-

regulation of Nrf2;23 protected against hepatotoxicity in rats via 

peroxisome proliferator-activated receptor gamma (PPARγ) and Nrf2 

up-regulation;24 alleviated toxicity through reversing the fatty acids 

metabolic pathway;25 and alleviated hepatotoxicity in rats via anti-

inflammation, antioxidation and anti-apoptosis.26  In addition, GA 

protected against liver injury in rats via reduced liver oxidative stress 

and improved lipid metabolism;27 protected against cholestatic liver 

injury in bile duct-ligated rats by restoring the homeostatic regulation 

of bile acid metabolism, by alleviating oxidative stress, inflammation, 

and apoptosis, and by impairing autophagy; and fibrosis;28  protective 

against cholestatic liver injury via choleretic and anti-inflammatory 

mechanisms involving inhibition of the toll-like receptor 2 

(TLR2)/nuclear factor kappa B (NF-κB) pathway and up-regulation of 

hepatic farnesoid X receptor (FXR) expression;29 ameliorated hepatic 

fibrosis by inducing reactive oxygen species (ROS)-mediated apoptosis 

and targeting PRDX1/2 in activated hepatic stellate cells (HSC);30 and 

protected against liver injury via alleviation in ferritinophagy and 

ferropsis followed by improvement in the mitochondrial function.31  

Recent studies have shown that GA protected against liver damage by 

reducing malondialdehyde levels, mitigating oxidative stress, and 

ameliorating inflammation;32 by inhibiting TNF-α/NF-κB/p38-MAPK, 

JAK1/STAT1 pathways, oxidative stress and apoptosis;33 by facilitating 

hepatocyte proliferation and activating the MAPK/Erk signaling 

pathway;34 by inhibiting GPX4-dependent ferroptosis;35 and by bimodal 

and time-dependent pharmacological activities.36  

 

Neuroprotective 

Neurological models have been used to assess their effects of GA and 

its derivatives on  ischemia (stroke), Alzheimer’s disease (AD) and 

Parkinson’s disease. Among these studies, GA has found to modulate 

microglia-suppresses experimental autoimmune encephalomyelitis 

(EAE) in mice by inhibiting microglia activation-mediated central 

nervous system (CNS) inflammation.42 Microglia are cells that play an 

important role in inflammatory demyelination diseases, such as 

multiple sclerosis. In neuroprotective activities, GA protected PC12 

cells from cytotoxicity via modulation of the PI3K/Akt pathway;37 

Yokukansan (YKS), a traditional Japanese medicine containing GA 

when fed to rats exhibited neuroprotection.  In another study, GA 

attenuated oxidative and neuronal damage in the brain of mice by 

increasing antioxidant defense and decreasing lipid peroxidation.40 GA 

also attenuated neuronal damage in brain tissue of mice via the increase 

in antioxidant defense and decrease in lipid peroxidation;  suppressed 

experimental allergic encephalomyelitis (EAE) in mice with 

neurodegenerative effect by inhibiting microglia activation, alleviating 

inflammation, strengthening antioxidant and promoting 

remyelination.42  GA protected Schwann cells with induced injury by 

reducing reactive oxygen species (ROS) and apoptosis; and protected 

against neurotoxicity in the brain tissue of rats via neuronal apoptosis, 

endoplasmic reticulum (ER) stress, and Janus kinase 1 (JAK1)/signal 

transducer and activator of transcription 1 (STAT1) signaling 

pathway.45 GA also protected neuronal cells from ferroptosis in mice 

through inhibition of iron accumulation and up-regulation of coenzyme 

Q10 (CoQ10) level;44 exhibited neuroprotection in ischemic stroke of 

mice through high-mobility group box 1 (HMGB1) inhibition and 

microglia polarization (MP) regulation;46 nose-to-brain delivery 

improved scopolamine-induced memory impairment in rats;47 and 

protected against cerebral ischemia/reperfusion (I/R) injury in rats by 

autophagy and by inhibiting the Janus kinase 2 (JAK2)/STAT3 

pathway.48 GA inhibitory effects on AD involved key signaling 

pathways, such as toll-like receptor 4 (TLR4), nuclear factor kappa B 

(NF-κB), mitogen-activated protein kinase, (MAPK) and cholinergic 

signaling.49  

 

Cardioprotective  

Model types used to study of the cardioprotective effects of GA include 

myocardial ischemia-reperfusion52 and doxorubicin-induced 

cardiotoxicity.56 In cardioprotective studies, GA protected the rat heart 

from ischemia/reperfusion (I/R) injury by attenuating fatal ventricular 

arrhythmia (FVA) during the reperfusion period, suggesting its 

antiarrhythmic role;52 protected H9c2 cells from apoptosis, and oxygen 

glucose deprivation (OGD)-induced injury via the PI3K/Akt signaling 

pathway;53 improved cardiac diastolic dysfunction induced by I/R 

injury by attenuating intracellular calcium overload;54 protected against 

myocardial infarction in mice via inhibition of apoptosis, inhibition of 

Ca2+ influx, and activation of the PI3K/Akt pathway;55 protected against 

cardiotoxicity in H9c2 and AC16 rat cells by suppressing oxidative 

stress, mitochondrial dysfunction and apoptosis via up-regulation of the 

Nrf2/HO-1 signaling pathway.56  GA also attenuated global cerebral 

I/R-induced cardiac damage in mice by amelioration of oxidative and 

histological damage of heart tissue;57 protected against chronic heart 

failure in rats by reducing lipid levels, up-regulating the expression of 

fibroblast growth factor 2 (FGF2) and vascular endothelial growth 

factor A (VEGFA), attenuating endothelial nitric oxide synthase 

(eNOS) expression, and modulating metabolic pathways;58 protected 

against cardiotoxicity through anti-apoptotic and antioxidant 

mechanisms; protected against myocardial I/R injury in mice by 

exerting anti-inflammation and antioxidant activities;59,60 and protected 

against myocardial dysfunction by inhibiting the secretion of 

angiotensinogen (AGT) by HepG2 cells and by alleviating the elevation 

of mitochondrial oxidative stress in cardiomyocytes.61  
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Table 1: Pharmacological activities, effects and mechanisms of glycyrrhetinic acid (GA). 
Activity Effect and mechanism Reference 

Hepatoprotective   

The hepatoprotective effects of GA on CCl4-induced liver injury in mice involved the inhibition of cytochrome P450 2E1 and its FRS 

ability. 

21 

GA exerted hepatoprotective activity on CCl4-induced chronic liver fibrosis in mice by reducing oxidative stress and up-regulating the 

nuclear translocation of Nrf2. 

22 

 

GA protected against CCl4-induced chronic liver fibrosis in mice via up-regulation of Nrf2. 23 

GA exerted protective effects against CPA-induced hepatotoxicity in rats via PPARγ and Nrf2 up-regulation. 24 

The protection of GA towards APAP-induced toxicity was through reversing the fatty acids metabolic pathway. 25 

GA protected against TPL‐induced hepatotoxicity in rats via anti-inflammation, antioxidation and anti-apoptosis. 26 

GA protected against CCl4-induced liver injury in rats via reduced liver oxidative stress and improved lipid metabolism. 27 

GA protected against cholestatic liver injury in bile duct-ligated rats by restoring the homeostatic regulation of 

bile acid metabolism, by alleviating oxidative stress, inflammation and apoptosis, and by impairing autophagy and fibrosis. 

28 

 

GA exerted hepatoprotective effects on LCA-induced cholestatic liver injury via choleretic and anti-inflammatory mechanisms 

involving inhibition of the TLR2/NF-κB pathway and up-regulation of hepatic FXR expression. 

29 

 

GA ameliorate hepatic fibrosis by inducing ROS-mediated apoptosis and targeting PRDX1/2 in activated HSC. 30 

GA protected against DON-induced liver injury via alleviation in ferritinophagy and ferropsis followed by 

improvement in mitochondrial function. 

31 

 

GA and gallic acid prevented AZM-induced liver damage in rats by reducing malondialdehyde levels, mitigating oxidative stress, and 

ameliorating inflammation. 

32 

 

GA mitigated BPA-induced liver damage by inhibiting TNF-α/NF-κB/p38-MAPK, JAK1/STAT1 pathways, oxidative stress and 

apoptosis. 

33 

 

GA accelerated liver regeneration in mice after partial hepatectomy by facilitating hepatocyte proliferation and activating the 

MAPK/Erk signaling pathway. 

34 

 

GA alleviated DON-induced hepatotoxicity in HepG2 cells and mice by inhibiting GPX4-dependent ferroptosis. 35 

GA-albumin nanoparticles restored acute liver injury in mice via bimodal and time-dependent pharmacological activities. 36 

Neuroprotective 

GA protected PC12 cells from 6-OHDA-induced cytotoxicity via modulation of the PI3K/Akt pathway. 37 

YKS, a traditional Japanese medicine containing GA, was orally fed to rats and its blood-brain barrier permeability was assessed. 

Results showed that GA was detected in the plasma, brain and cerebrospinal fluid of rats. It is evident that GA is absorbed into the 

blood and then reaches the brain through the BBB. 

38 

Oral administration of YKS to rats showed that specific binding sites for GA existed in the rat brain as 11β-HSD1. 39 

GA attenuated oxidative and neuronal damage in brain tissue caused by global cerebral I/R in mice via the increase in antioxidant 

defense and decrease in lipid peroxidation. 

40 

 

GA attenuated neuro-inflammation in LPS-induced inflammation neuronal cells of the hippocampus by promoting anti-inflammatory 

and anti-apoptosis effects. 

41 

 

GA suppressed EAE in mice by inhibiting microglia activation, alleviating inflammation and promoting remyelination. 42 

GA when fed to Caenorhabditis elegans (nematode) had proteasome activation that retarded aging and AD progression. 43 

GA protected the brain tissue against EAE in mice with neuro-degenerative effect via its antioxidant and anti-inflammatory activities. 44 

GA protected against H2O2-induced injury in Schwann cells by reducing ROS and apoptosis. 45 

GA possessed neuroprotective effects on BPA-induced neurotoxicity in the brain tissue of rats with mechanisms involving neuronal 

apoptosis, ER stress, and JAK1/STAT1 signaling pathway. 

46 

GA protected neuronal cells from ferroptosis in mice through inhibition of iron accumulation and up-regulation of CoQ10 level. 47 

Polymeric nanoparticles conjugated with GA exhibited neuroprotection in ischemic stroke of mice through HMGB1 inhibition and 

MP regulation. 

48 

GA in LNC was fed to rats by intranasal administration. Nose-to-brain delivery of GA improved scopolamine-induced memory 

impairment in the rats, providing a promising remedy for AD. 

49 

 

GA protected against cerebral I/R injury in rats by autophagy and by inhibiting the JAK2/ STAT3 pathway, suggesting its potential as 

a drug candidate for ischemic stroke. 

50 

 

GA inhibited the effects of AD involving key signaling pathways, such as TLR4, NF-κB, MAPK and cholinergic signaling. 51 

Cardioprotective 

GA protected the heart from I/R injury by attenuating FVA during the reperfusion period in the rat heart, suggesting it is 

antiarrhythmic role. 

52 

 

GA protected H9c2 cells from apoptosis and OGD-induced injury via the PI3K/Akt signaling pathway. 53 

GA improved cardiac diastolic dysfunction induced by I/R injury by attenuating intracellular calcium overload. 54 

GA protected against myocardial infarction in mice via inhibition of apoptosis, inhibition of Ca2+ influx, and activation of the 

PI3K/Akt pathway. 

55 

GA protected against DOX-induced cardiotoxicity in H9c2 and AC16 cells by suppressing oxidative stress, mitochondrial 

dysfunction, and apoptosis through up-regulation of the Nrf2/HO-1 signaling pathway. 

56 

GA attenuated global cerebral I/R-induced cardiac damage in mice by amelioration of oxidative and histological damage of heart 

tissue. 

57 

GA and HA protected against chronic heart failure in rats. The mechanisms may involve reducing lipid levels, up-regulating the 

expression of FGF2 and VEGFA, attenuating eNOS expression and modulating metabolic pathways. 

58 

 

GA exerted cardioprotective effects against BPA‐induced cardiotoxicity through anti-apoptotic and antioxidant mechanisms, 

suggesting its role in maintaining cardiac health. 

59 
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Neutrophil‐mediated delivery of GA exerted cardioprotection against myocardial I/R injury in mice by exerting anti-inflammation 

and antioxidant activities. 

60 

 

 

GA was identified as an AGT inhibitor against LPS-induced myocardial dysfunction. It inhibited the secretion of AGT by HepG2 

cells and alleviated the elevation of mitochondrial oxidative stress in cardiomyocytes. 

61 

Nephroprotective  

GA protected against CP-induced nephrotoxicity in renal cells of mice by up-regulating Nrf2, down-regulation NF-κB, and 

significantly inhibiting HMGB1 in the kidney. 

62 

 

GA protected against MTX-induced nephrotoxicity in the kidney of mice by attenuating oxidative stress and inflammation, and by up-

regulating the Nrf2/ARE/HO-1 pathway. 

63 

 

GA protected against CP-induced kidney injury in mice by inhibiting apoptosis of renal cells, enhancing BMP-7, and targeting 

HDAC2. 

64 

 

GA ameliorated fructose-induced nephropathy in renal cells of mice by suppressing ROS production, lipid accumulation, and 

inflammation. 

65 

 

GA improved kidney function and alleviated RF in mice by inhibiting the inflammatory response characterized by reduction in the 

activation and migration of inflammatory cells. 

66 

 

GA protected kidney tissue from LPS-induced oxidative and tissue damage based on histopathological and oxidative stress analyses. 67 

GA attenuated D-galactose-induced oxidative stress and inflammatory responses in the kidneys of weaned piglets. 68 

GA loaded in carthamin yellow liposomes alleviated interstitial fibrosis in diabetic nephropathy. 69 

 

AD = Alzheimer’s disease, AGT = angiotensinogen, Akt = protein kinase B, APAP = acetaminophen, ARE = antioxidant response element, AZM = 

azithromycin, BBB = blood-brain barrier BMP-7 = bone morphogenetic protein-7, BPA = bisphenol A, CCl4 = carbon tetrachloride, CNS = central 

nervous system, CoQ10 = coenzyme Q10, CP = cisplatin, CPA = cyclophosphamide, DON = deoxynivalenol, DOX = doxorubicin, EAE = experimental 

allergic encephalomyelitis, eNOS = endothelial nitric oxide synthase, ER = endoplasmic reticulum, FGF2 = fibroblast growth factor 2, FRS = free radical 

scavenging, FVA = fatal ventricular arrhythmia, FXR = farnesoid X receptor, GPX4 = glutathione peroxidase 4, HA = hypaconitine, HDAC2 = histone 

deacetylase 2, HMGB1 = high-mobility group box 1, HO-1 = hemoxygenase-1, H2O2 = hydrogen peroxide, HPD = haloperidol, HSC= hepatic stellate 

cells, 11β-HSD1 = 11β-hydroxysteroid dehydrogenase type-1, I/R = ischemia/reperfusion, JAK = Janus kinase, LCA = lithocholic acid, LNC = lipid 

nanocapsules, LPS = lipopolysaccharide, MAPK= mitogen-activated protein kinase, MP = microglia polarization, MTX = methotrexate, NB = nose to 

brain, NF-κB = nuclear factor kappa B, Nrf2 = nuclear factor E2-related protein, OGD = oxygen glucose deprivation,  6-OHDA = 6-hydroxydopamine, 

PI3K = phosphatidylinositol 3-kinase, PPAR-γ  = peroxisome proliferator-activated receptor gamma,  PRDX1/2 = peroxiredoxin1/2, RF = renal fibrosis, 

ROS = reactive oxygen species, STAT = signal transducer and activator of transcription, TLR2 = toll-like receptor 2, TNF-α = tumour necrosis factor, 

TPL = triptolide, VEGFA = vascular endothelial growth factor A, and YKS = Yokukansan. 

 

Nephroprotective  

GA protected against nephrotoxicity in renal cells of mice by up-

regulating nuclear factor E2-related protein (Nrf2), down-regulating 

NF-κB, and significantly inhibiting HMGB1 in the kidney;62 protected 

against nephrotoxicity in the kidney of mice by attenuating oxidative 

stress and inflammation, and by up-regulating the Nrf2/ARE/HO-1 

pathway;63 and protected against CP-induced kidney injury in mice by 

inhibiting apoptosis of renal cells, promoting bone morphogenetic 

protein-7 (BMP-7), and targeting histone deacetylase 2 (HDAC2).64  

Also, GA ameliorated nephropathy in renal cells of mice by suppressing 

ROS production, lipid accumulation, and inflammation;65 improved 

kidney function and alleviated renal fibrosis (RF) in mice by inhibiting 

the inflammatory, and by reduction in the activation and migration of 

inflammatory cells;66 and protected kidney tissue from oxidative and 

tissue damage based on histopathological and oxidative stress 

analyses.67 Recent studies have reported the GA protected against 

kidney damage by attenuating D-galactose-induced oxidative stress and 

inflammatory responses.68 and by alleviating interstitial fibrosis.69  

 

Other Properties 

Apart from anti-cancer and anti-inflammatory activities of GA, other 

pharmacological properties include anti-asthmatic, skin protection, 

antibacterial, anti-parasitic, anti-periodontitis, anti-alopecia, anti-

osteoclastogenesis, anti-obesity, pulmonary hypertension, anti-cystitis 

glandularis, anti-ulcerative colitis and anti-viral activities.  

 

Anti-asthmatic 

GA exhibited a regulating effect on bronchial asthma (BA) smooth 

muscle proliferation and apoptosis including inflammatory factor 

expression in guinea pigs via the extracellular signal-regulated kinase 

(ERK)1/2 signaling pathway.71 GA significantly inhibited ovalbumin 

(OVA)-induced airway inflammation, eosinophil infiltration and 

airway hyper-responsiveness (AHR) in a mouse model of allergic 

asthma by suppression of Th2 cytokines via signal transducer and 

activator of transcription 6 (STAT6), GATA-binding protein 3 (GATA-

3) and fork-head box p3 (Foxp3) transcription pathways.72 These data 

suggested that GA is a novel therapeutic compound for the treatment of 

inflammatory airway disorders, including allergic asthma. GA 

suppressed allergic airway inflammation in asthma mice through 

nuclear factor kappa B (NF‑κB) and nuclear factor erythroid 2-related 

factor-2 (Nrf2)/heme oxygenase-1 (HO‑1) signaling pathways.72  

 

Skin protection 

GA has been reported to possess skin protection effects on mice with 

experimental skin damage.  Against ultraviolet (UV) irradiation-

induced skin photoaging in mice, the protective effect of GA was 

mainly attributed to its antioxidative and anti-inflammatory properties, 

as well as the significantly inhibition of the expression of matrix 

metalloproteinase (MMP)-1 and -3.73 GA promoted the proliferation, 

migration, and aquaporin-3 (AQP-3) expression of human dermal 

fibroblast, that implied its role in the treatment of skin diseases 

characterized by impaired wound healing or dermal defects.74 GA 

mitigated radiation-induced skin damage in mice by inhibiting via 

NADPH oxidase-derived ROS production and by activating p38MAPK 

and NF-κB pathways.75 GA is a useful remedy for other skin disorders 

such as atopic dermatitis, hyper-pigmentation and acne.76 Against 

imiquimod (IMQ)-induced psoriasis, a chronic skin disease, GA 

displayed inhibitive effect by breaking CCL20 or CCR6 and targeting 

glucuronidase beta (GUSB)/activating transcription factor 2 (ATF2) 

signaling.77  

 

Anti-MRSA 

GA did not inhibit the growth of Staphylococcus aureus, but the 

secretion of αH by S. aureus was significantly inhibited by GA.78 In 

vivo data showed that GA provided protection against staphylococcal 

pneumonia in mice by marked alleviating pulmonary inflammation. GA 

at concentrations exceeding 0.22 µM exhibited bactericidal activity 

against methicillin-resistant S. aureus (MRSA).79 Topical GA 

significantly reduced skin lesion and attenuated virulence gene 

expression in MRSA infected mice. GA exhibited strong antibacterial 

activity against S. aureus including MRSA.80 This activity might be due 

to the inhibition of several pathways involved in carbohydrate and 

amino acid metabolism. GA induced metabolic changes in S. aureus 

and reduced bacterial cell-to-cell interactions.81  

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/ubidecarenone
https://www.google.com/search?sca_esv=12285563bc1576d9&sxsrf=AE3TifNH_XWgH8t1jj7D0yhCJ5Lk6_SVjQ%3A1759733671808&q=Tumor+Necrosis+Factor&sa=X&ved=2ahUKEwi0-aDj_o6QAxV0yDgGHSQfKbsQxccNegQIFxAB&mstk=AUtExfAKhXfnOL0ZgYHvms_Ua4hjmJDmsTENCDt9C-5435_OrRN6SGq2RhgwthhIKE-SRmigc9V8dUATgS6MXGIBllLxKT9IAbesigMHK4xKWgXuDR5pLkMiWbPjtpL_2eIOIyGHccaWL-FFulG6blOvIi_cTB52yp1pol2zoTHeO3N5QN_ownRbRv-kGsxjZBs0skRUUO8lHZG822ON-a7fy3m4xgKZEbopU7tjS6jciKZmd64Cckx2d9Jm5aO0XoaULu1zmCqUldGcMC6BK6zttqmP&csui=3
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Anti-parasitic 

In vitro studies showed that GA has a IC50 value of 1.69 μg/ml against 

Plasmodium falciparum, the parasite of malaria.82 In malaria infected 

mice, GA displayed a dose-dependent anti-malarial activity ranging 

from 68–100% at doses of 62.5–250 mg/kg on day eight. Against 

microfilariae worms of Brugia malayi, the parasite that spreads 

filariasis, the IC50 inhibition of GA was 1.20 µM.83 However, GA was 

inactive against adult worms of B. malayi. GA displayed anti-

leishmanial effect against mice infected with Leishmania donovani 

promastigotes, the parasite of leishmaniasis.84  

 

Anti-periodontitis 

GA suppressed periodontitis in interleukin-10-deficient mice by 

inhibiting pro-inflammatory cytokine production and 

osteoclastogenesis via inactivation of nuclear factor-κB.85 Topical 

application of GA in the gingival sulcus inhibited attachment loss and 

alveolar bone resorption in lipopolysaccharide (LPS)-induced 

experimental periodontitis of rats.86 GA alleviated oxidative damage in 

periodontal tissue of rats by modulating the interaction of Cx43 and C-

Jun N-terminal kinase (JNK) /nuclear factor kappa-B (NF-κB) 

pathways.87  

 

Anti-alopecia 

In a study on the protective effect of GA in male rats with androgen-

induced alopecia. Rats with GA applied to the dorsal denuded skin 

showed excellent hair growth promoting and restoring activity.88 GA 

stimulated the proliferation of dermal papilla cells and outer root sheath 

cells isolated from human hair follicles, suggesting that GA could be a 

effective treatment for androgenetic alopecia.89  

 

Anti-osteoclastogenesis 

GA inhibited osteoclastogenesis and bone loss in mice by blocking 

receptor activator of nuclear factor κB ligand (RANKL)-mediated 

RANK–TNF receptor-associated factor (TRAF6) interactions, and 

nuclear factor kappa B (NF-κB) and mitogen-activated protein 

kinase (MAPK) signaling pathways.90 GA inhibited interleukin-1β (IL-

1β)-induced inflammatory response in mouse chondrocytes and 

prevented osteoarthritic progression by activating nuclear factor 

erythroid-derived 2-like 2 (Nrf2).91  

 

Hypolipidemic 

GA exerted hypolipidemic activity on streptozotocin (STZ)-induced 

diabetic rats by significantly decreasing plasma high density lipoprotein 

(HDL)-cholesterol.92 GA inhibited lipid accumulation during the 

differentiation of 3T3-L1 preadipocytes and promoted lipolysis in 

differentiated adipocytes.93 GA attenuated anandamide (ANA)-induced 

mouse 3T3-L1 preadipocytes adiposity and high-fat diet (HFD)-

induced obese mice.94    

 

Lung protection 

GA ameliorated idiopathic pulmonary fibrosis (IPF), a lung disease, by 

modulating the transforming growth factor-β (TGF-β1)/Janus kinase 2 

(JAK2)/signal transducer and activator of transcription 3 (STAT3) 

signaling pathway.95 Against another lung disease, GA reduced lung 

inflammation caused by Streptococcus pneumoniae infection by 

reducing the toxicity of pneumolysin, a toxin of the bacteria.96 GA 

protected against lung injury caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) infection by activating the 

cyclic GMP-AMP synthase (cGAS)-human stimulator of interferon 

genes (STING) signaling pathway.97  

 

Cell protection 

Against H2O2-induced oxidative stress in porcine intestinal epithelial 

cells, GA attenuated oxidative damage and apoptosis via activation of 

the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling 

pathway.98  

 

Alleviation of pulmonary hypertension  

GA alleviated pulmonary hypertension in rats by regulating the vascular 

non-inflammatory molecule-1/L-arginine/nitric oxide signaling 

pathway.99  

 

Amelioration of gastric mucosal injury  

GA ameliorated gastric mucosal injury in rats by modulating gut 

microbiota and its metabolites via Thbs1/PI3K-Akt/p53 pathway.100 

 

Anti-cystitis glandularis  

GA possessed anti-cystitis glandularis effects on mice. GA-treated mice 

exhibited reduced contents of inflammatory cytokine and down-

regulated PTGS2 and MUC1 mRNA, and protein levels.101  

 

Anti-ulcerative colitis  

GA protected colonic epithelium in ulcerative colitis by activating 

Wnt/β-catenin pathway to restore tight junction.102 In the amelioration 

of ulcerative colitis by GA, meachanism involved modulation of the 

PPAR-γ/NF-κB signaling pathway.103  

Anti-viral  

GA has a wide range of antiviral activities. Noteworthy are viruses, such 

as hepatitis virus, herpes virus and coronavirus 2 (SARS-CoV-2).104  

 

Conclusion 
GA is a pentacyclic triterpenoid from licorice (Glycyrrhiza glabra), a 

useful and multi-purpose medicinal plant. With a molecular formula of 

C30H46O4 and a molecular weight of 470.7 g/mol, GA consists of two 

stereoisomers, namely, 18β-GA and 18α-GA. Pharmacological 

properties of GA reviewed are hepatoprotective, neuroprotective, 

cardioprotective and nephroprotective activities. Other 

pharmacological properties include anti-asthmatic, skin protection, 

antibacterial, anti-parasitic, anti-periodontitis, anti-alopecia, anti-

osteoclastogenesis, anti-obesity, pulmonary hypertension amelioration, 

anti-cystitis glandularis, anti-ulcerative colitis and anti-viral activities. 

Current evidence on the pharmacology of GA is limited to pre-clinical 

studies, with a lack of clinical validation. The molecular mechanisms 

involving the NF-κB and Nrf2 pathways recur in most systems of GA. 

Research gaps in GA and its derivatives include pharmacokinetics, 

structure–activity relationship (SAR), toxicology and synergistic 

formulations. Prospects and topics of further research are suggested in 

the concluding remarks. Suggestions for further studies of GA include: 

1) Chemical modifications of GA aimed at enhancing its potency; More 

in-depth investigations on the effects and mechanisms with regard to 

the other pharmacological activities of GA; A comparison between the 

pharmacological properties of GA and other pentacyclic triterpenoids 

from Glycyrrhiza species such as glycyrrhizin would be interesting to 

natural product chemists; The dermatological application and drug 

delivery system of GA are worth of further studies; The development 

of GA and its derivatives in value-added commercial products, by itself 

or in combination with other drugs, would attract the exploratory 

attention of pharmaceutical companies; and Microbiologists would be 

keen to find out a complete list of bacteria and virus that are susceptible 

to GA. Overall, the prospects for research and development of GA are 

promising.  
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