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Excessive alcohol drinking leads to chronic kidney injury (CKI). Bidens pilosa, as a medicinal
plant, has promising antibacterial, antimalarial, hepatoprotective, and antidiabetic activities. There
is a dearth of information on the therapeutic effect of ethanol extract of Bidens pilosa leaves
(EEBP) against alcohol-induced CKI. The exploration of EEBP as renoprotection was evaluated
through a comprehensive experimental and pharmacoinformatics analysis. Alcohol (10 ml/kg)
was administered for 6 weeks or in combination with EEBP (250, 500, and 750 mg/kg). Induction
of alcohol significantly (p < 0.05) increased the total cholesterol, triglyceride, LDL, creatinine,
and uremic levels. Furthermore, kidney tissue abnormalities were observed in the alcohol group.
The data indicated that EEBP improved the kidney histology and decreased the levels of lipid
profile and kidney function parameters. The compounds have the flexibility and stability to bind
to active sites of protein, consisting of PPARG, SIRT, HIF1A, and NQO1. This study shows that
EEBP exerted an ameliorative effect in alcohol-induced kidney injury.
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Introduction

Chronic alcohol intake has a higher morbidity and mortality due
to the dysfunction of the kidneys.! The alcohol dehydrogenase (ADH)
plays an important role in converting alcohol to acetaldehyde, which
could be toxic in cells.? The development of cancer with alcohol intake
is associated with the ADH1B gene. The kidney function damage was
related to nephrotoxicity.® Based on the previous study, it has been
stated that primary kidney disorders accelerated by continuous alcohol
consumption tend to cause a decreased the rate of glomerular filtration
at 7 mL/min/1.69 m?. 4 High-dose alcohol metabolism increases the
nicotinamide adenine dinucleotide (NADH), lipid oxidation, and free
radicals. ® The imbalance of antioxidant agents®, for example NAD(P)H
quinone dehydrogenase-1 (NQO1), could be an indicator for the rise of
alcohol dehydrogenase activity that is linked to the excessive TGF-3
transcription.” In addition, the accumulation of alcohol disrupts 11p-
hydroxysteroid dehydrogenase activities in the kidney.® This enzyme is
involved in blood pressure regulation and the mineralocorticoid
receptor in the Kidney.® The previous evidence reported that higher
alcohol intake decompensated 75% of cirrhosis associated with
glomerulopathy.® Although numerous studies have reported that CKI
prevalence correlated with heavy alcohol intake'*3, the mechanisms of
the ameliorative effects of medicinal plants on CKI therapy are
unknown.
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Bidens pilosa is a medicinal plant used for managing several diseases,
for instance, gastritis, pharyngitis, diarrhea, smallpox, colic, infectious
disease and asthma.* B. pilosa leaves have higher antioxidants that
tackle scavenge free radicals.’® Prior studies documented that the
constituents of B. pilosa, consisting of phenylpropanoids, flavonoids,
aliphatic compounds, porphyrins, terpenes, and flavonoids, have
significantly decreased the risk of diabetes, hypertension, and
hyperglycemia.'® Based on pharmacological activities, the EEBP has
some properties, such as anti-carcinogenic, anti-mutagenic, hepatic
disorder treatment, immunomodulatory, and anti-inflammatory.*’

Treatments for CKI are usually associated with undesirable
effects.’®1° There are limited studies on the biological mechanisms of
EEBP would attenuate the Kidney disorder after administration of
alcohol and construct the molecular pathway of CKI treatment.

Methods

Plant Authentication

Bidens pilosa leaf was procured from Jae Village (GPS Code:
6MJIW568P+HH, North Sumatera, Indonesia) on March 12, 2025. The
classification process was done by a taxonomist the Biology
Laboratory, State University of Medan, Indonesia.

Extraction of B. pilosa leaves

100 g of sample was rinsed, dried and powdered to the mesh size. The
maceration was adjusted utilizing ethanol solvent (89%) with twice-a-
week intermittent shaking. The extract was refined, concentrated by a
rotary evaporator, and stored at 4°C.

In vivo studies in rats

The Institutional Ethics Committees of UNIMED approved all animal
treatment regulations (ethical ID 0453/KEPH-FMIPA/2019). The
animal protocols followed the guidelines of 2010/63/EU. This study
was executed for six weeks using twenty-five male rats (180 + 30 g)
(n=5). The rats were treated as follows: the group TO was administered
CMC 0.5%; group T1 was given orally 32% alcohol 10 ml/kg; group
T2 received 32% alcohol (10 mi/kg) + EEBP 250 mg/kg; group T3 was
given 32% alcohol 10 mi/kg + EEBP 500 mg/kg; group T4 was
administered 32% alcohol 10 ml/kg + EEBP 750 mg/kg. On the last
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experiment day, all the animals were anesthetized using chloroform had
had their neck dislocated, and were dissected in the abdominal cavity.
The blood was put in the tube with an ethylene diamine tetra acetic acid
(EDTA). The isolated kidneys were collected, weighed, and put into the
tube with 10% formalin neutral buffer.

Biochemical analysis

The blood was centrifuged at 3000 rpm for 5 minutes. Serum total
cholesterol, triglyceride, HDL, and LDL were evaluated using
commercial biochemical kits (PT. Rajawali Nusindo, Indonesia). The
creatinine and uremic level were determined using a photometric
method.

Histology staining

The pathological alterations in kidney tissues were observed using the
H&E method. The samples were dehydrated, cleared, infiltrated, and
embedded based on our previous research. 2 Tissue sections were
photographed under magnification of 100x using a light microscope
(Nikon E400, Sanford).

Data Analysis

All distributed values were shown as mean + standard deviation (SD).
Statistical evaluation was compared with ANOVA followed by post
hoc Tukey’s test. p < 0.05 was considered the significant difference.

Modern Pharmacological Identification

The phytocompounds from B. pilosa and gene markers of CKI were
exported to the STRING database. The confidence score of 0.7 was set
to predict the signal pathway between protein and active compounds of
the species “Homo sapiens”. Protein network construction was
demonstrated utilizing Cytoscape ver. 3.9.1. 2

Docking Study

The compounds of EEBP were extracted from the PubChem database.
All protein structures (3D), for instance PPARG, SIRT, HIF1A, and
NQO1 %, were downloaded from the RCSB database. AutoDockTools
1.5.7 was employed to clean the water and ligands from the protein
structure. Autodock Vina software ver. 4.2 was applied to facilitate the
docking study. The interaction between the receptors and compounds
of B. pilosa complexes was rendered using Biovia Discovery Studios
software.
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Dynamic Simulation

The conformational ensembles were predicted using molecular
dynamic simulation.?® The Cabs-flex database was utilized to perform
the protein stability motion.?* RMSF scores determined the dynamic of
flexible regions between the active compounds of B. pilosa and
receptors.

Results and Discussion

The metabolism of alcohol generates the accumulation of superoxide
radicals, ROS, and hydrogen peroxide.?> Continuous alcohol intake
could raise pro-inflammatory activities and oxidative injury.?® High
ROS production affects antioxidant activities and mitochondrial
impairment in the kidney cells.?” This evidence alters the vasopressin
secretion and electrolyte balance 22°, which results in diuresis and
hyponatremia. 33! The urinary antioxidant capacity®® affected the
kidney function® through the elimination process of hydroxyl, singlet
oxygen, and peroxyl radicals.®* In this current study, the alcohol model
of kidney injury was created to identify the beneficial effect of EEBP
through pharmacoinformatic and in vivo analysis. The alcohol rats (T1)
indicated the highest of oxidative injury markers in the Kidney. In
contrast, the EEBP supplementation (500 and 750 mg/kg) significantly
reduced (p <0.05) total cholesterol, triglyceride, creatinine, uremic, and
LDL levels (Figure 1). Compared to group TO, a significant reduction
(p < 0.05) of HDL was performed in the alcohol groups. Group T3
significantly increased the HDL level. This finding is consistent with
the previous investigation that the medicinal plant could suppress the
renal fibrosis and dysfunction in the mice model of CKI.%®
Additionally, histoarchitecture examination of kidney tissues showed
the normal distal tubular and renal proximal structures in the control
groups (T0). In contrast, the significant histological abnormalities were
found in the alcoholic groups (T1); for instance, the inflammatory cell
infiltration, tubule interstitial fibrosis, Bowman’s capsule dilatation,
and glomerular shrinkage (Figure. 2). Morphological alteration of the
glomeruli could be the primary indicator in chronic kidney
progression.®¢-3 The treatment of EEBP at doses of 500 and 750 mg/kg,
respectively, indicated reduced distortions in kidney histology due to
fewer areas of tubular epithelial loss, Bowman’s space dilatation, and
cellular inflammation.
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Figure 1: Effect of EEBP supplementation on the level of (A) Creatinine, (B) Uremic; (C) Cholesterol; (D) Triglyceride; (E) HDL; and
(F) LDL in alcohol-induced kidney injury. TO (CMC 0.5%); T1 (30 % alcohol 10 ml /kg); T2 (30 % alcohol 10 ml /kg + EEBP 250 mg
/kg); T3 (30 % alcohol 10 ml /kg + EEBP 500 mg /kg); T4 (30 % alcohol 10 ml /kg + EEBP 750 mg /kg). (*p < 0.05, n=5.

The current research claimed 79 nodes and 901 edges in the protein
network construction between B. pilosa and alcohol kidney injury. The
Cytoscape software identified 13 core targets (Figure 3A), which had a
higher level, including TP53, AKT1, SIRT1, JUN, MAPKS8, NQO1,
KRAS, PPARG, MTOR, HIF1A, MAPKS3, IL6, and FOS. As depicted
in Figure 3B, the top 10 are the relevant biological enrichments of the
core target linked to CKI, notably the response to reactive oxygen
species and cellular response to chemical stress. The significant
mechanism pathway of B. pilosa relieved the CKI in alcohol rats is
illustrated in Figure 3C.

For a strong investigation of the therapeutic effect of EEBP,
pharmacoinformatic approaches® have been employed to verify the
possible molecular mechanism of EEBP in alcohol-induced CKI.

Furthermore, the docking analysis verified the potential of EEBP with
a higher binding affinity to the active site of PPARG, SIRT, HIF1A,
and NQO1, as presented in Figure 4. A total of 7 active compounds
from B. pilosa, such as, apigenin, apigenin-7-apioglucoside, lupeol
acetate, daucosterol, luteolin, quercetin, and lupeol acetate (Table 1),
have a good binding pose and a low docking score. Additionally, the
dynamic simulation data revealed the structural flexibility between the
active phytocompounds of B. pilosa and the core target complexes, as
shown in Figure 5. The optimization of novel therapy for CKI via
molecular mechanism evaluation tends to enhance the efficacy and
effectiveness of treatments*®, for example, the development of
pharmacoinformatic strategies through the enhancement of integrin
B1/INK signaling transduction in CKI.%*
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Figure 2: Effect of B. pilosa on histopathological alteration of kidney tissues in alcohol-induced CKI. TO (CMC 0.5%); T1 (30 %

alcohol 10 ml /kg); T2 (30 % alcohol 10 ml /kg + EEBP 250 mg /kg); T3 (30 % alcohol 10 ml /kg + EEBP 500 mg /kg); T4 (30 %

alcohol 10 ml /kg + EEBP 750 mg /kg). GR: glomerulus, Kp: bowman’s capsule, TKP Bb: proximal tubule, End: endothelial, Pr:
inflammatory cells, Pn: inflammatory cells, BB: renal proximal tubular brush border, GRr: Glomerulus Retraction.
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Figure 3: (a) Network pharmacology highlighting B. pilosa alleviates chronic kidney injury in alcoholic rats; (b) Enrichment analysis
identifying significant biological activity of B. pilosa; (c) KEGG pathway illustrating the mechanism of B. pilosa against alcohol
induced chronic kidney injury
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Figure 4A: Docking studies between PPARG and phytochemical from B. pilosa (i) Daucosterol; (ii)Apigenin-7-

apioglucoside; (iii) Quercetin; (iv) Apigenin; (v) Luteolin.
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Figure 4B: Visualization of binding sites between SIRT and active compounds from B. pilosa (i) Lupeol acetate; (ii)
Daucosterol; (iii) Apigenin-7-apioglucoside; (iv) Apigenin; (v) Quercetin.
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Figure 4C: Docking analysis between HIF1A and bioactive compounds of B. pilosa (i) Daucosterol; (ii)Apigenin-7-apioglucoside; (iii)
Lupeol acetate; (iv) Apigenin; (v) Luteolin
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Figure 4D: Molecular docking between NQO1 and phytocompound of B. pilosa (i) Apigenin; (ii)Daucosterol; (ii)Apigenin-7-
apioglucoside; (iv) Lupeol acetate; (v) Luteolin

Table 1: Docking results of all phytocompounds of B. pilosa binding to the target protein linked to alcoholic kidney injury

Compound PPARG SIRT HIF1A NQO1
Bindi Hydrog Hydrop Bindin Hydrogen Hydroph Bind Hydroge Hydrophob Bindin Hydrogen Hydroph
ng en Bond  hobic g Bond obic ing n Bond ic g Bond obic
Affin Interact  Affinit Interacti  Affi Interaction  Affinit Interacti
ity ion y on nity y on
(kcal/ (kcal/ (kcal (kcal/
mol) mol) /mol mol)
)
Apigenin -9.2 Metd63  Leud5S3 -8.5 Tle347, Ala262, -7.6 AsngS5, Leul29, -10.5 Serl73, Phe228
R Asp348 11e270, Ser86, Vall55 His177,
Lys457 Phe273 Glul34, Ala223
Vall55
Apigenin- -9.7 Phe282, Ala292, -8.8 Ala262, Val266, -8.1 Glyl127, Leul29, -8.2 Tyr132, Phe228
7- Ser289, Met329 GIn345, Arg274, GInl132, Prol54, Phe236
apioglucos Glu295, Ser441, Arg466 Vall55, Glul60
ide His323, Ser442, Thr157,
His449 Leud43, Argl67,
Arg460, Asn193
Asp481
Butein -7.8 Gln454,  Val450, -7.6 Gly4380, Ala262 -7.2 Glyl127, Tyr156, -7.4 Ala223, Leu230
Glu460, Leud53 Cys482 Vall55, Thr157, His257
Met463, s Thr157, Prol192
Asp475  Ile456, Asp190,
Lys457, Aspl97
Met463
Leud65
Tyrd73
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Okanin -8.0  GInd54, Val450, -8.3 11270, Ala262, -6.8 Tyr83, Leul29, -7.2 Ala223, Tyrl32,
Ile456,  Leud53 Asnd65, Val266, Asn85, Prol54, His257 Leu230
Met463, s Argd66, Argd66 Ser86, Vall55
Asp475  Lys457, Gly4380, Glyl127,
Tyr473 Cys482 Leul28
Centaureid  -8.1  Arg288, Arg288 -1.5 Lys408 Glu410, -6.9  Aspl26, Tyrl56, -6.6 Phell6 Phel78
in Glu295, , Val412, GLyl127, Glul60
Ser342, Ile326, Pro419 Vall55,
Glu343  Leu330 Thrl57,
Glnl64
Daucostero  -10.4  Leu228, Phe282 93 Asn226 Pro212, -8.4 Argl67, Thr84, 9.2 Phel20 Tyrl128,
1 Glu343 , 1le223, Asp190, Leul29, Metl31,
GIn286 Asp298, Asnl93, Prol54, Tyr132,
R Phe414 Aspl197, Vall55, Phel78,
Leu333 Arg200 Tyrl56 Phe228,
R Leu230,
Phe363 Phe236
Leu453
Leu469
Tyrd73
Luteolin -8.5  Leu228, Phe226 -7.9 Lys304 Pro212, -7.5  Leul28, Prol54, -7.9 Ala223, Phe228
Arg288, , Ala295, Argl67, Glul60 Phe236,
Ser342  Arg288 Asp298, Aspl190
, Tyr301
Ala292
Linolenic -6.5 - le281, -5.4 1le210 Thr209, -4.3 Glul34 Prol54, -5.1 Ser71, Gly122 Pro68,
Acid Phe282 Pro212, Tyr156, Phelle6,
R Pro291, Thrl57, Glull7,
GIn286 GIn294, Glul60, Phel20,
, Ala295, Pro192 Tyr126,
Ile326, Phe414 Ilel75,
Tyr327, Phel78
Leu356
Phe360
Phe363
Phe453
Tyrd73
Lupeol -7.1 - Tyr320, -10.3 - Leu206, -7.7 - Prol54, -8.1 - Phell6,
acetate His323, 11e223, Tyrl56, Tyr128,
Val446, Pro291, Pro192 Phel78,
Thr447, Phe414 Phe232
Gln454
Quercetage  -7.9 Ser289  Arg288 -7.3 GIn361, Val412, -6.7 Asn85, 1190, -6.7 Phell6, Phel78
nin , Gludl6 Pro419 Ser86, Leul29, Glyl174
Glu291 Glul34, Prol54,
, 11e326 Vall55, Vall55
Arg200
Quercetin -9.7 Cys285, Leu330 -8.3 Ala262, Ala262, -7.4  Argl20, Leul29, -7.5 Phel20, Pro68,
Arg288, , Asp272, Val266 His125, Pro192 Gly122, Phel78
Glu295, Leu333 Arg274, Glyl27, Tyrl26,
Ser342, Ser275, GInl132, Glyl174
Glu343 Gly440, Val155,
Serd42, Thr157
Leud43,
Arg 466
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Figure 5A: RMSF plot of PPARG - the phytocompounds of B. pilosa for the structural flexibility analysis (i) Daucosterol;
(ii)Apigenin-7-apioglucoside; (iii) Quercetin; (iv) Apigenin; (v) Luteolin.
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Figure 5B: The value of RMSF for the structural stability analysis between SIRT and the active compounds from B. pilosa (i) Lupeol
acetate; (ii)Daucosterol; (iii) Apigenin-7-apioglucoside; (iv) Apigenin; (v) Quercetin
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Figure 5C: The value of RMSF in the structural flexibility analysis between HIF1A and the active compounds from B. pilosa (i)
Lupeol acetate; (ii)Daucosterol; (iii) Apigenin-7-apioglucoside; (iv) Apigenin; (v) Quercetin.
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Figure 5D: The value of RMSF in the structural stability analysis between NQO1 and the active compounds from B. pilosa (i) Lupeol
acetate; (ii)Daucosterol; (iii) Apigenin-7-apioglucoside; (iv) Apigenin; (v) Quercetin
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Alcohol decreased the CREB (CAMP response element-binding
protein) function through the PPARG and HIF signaling pathways,
which promoted a high ROS level in epithelial cells of the proximal
renal tubule.”** Additionally, the oxidative stress generated
mitochondrial dysfunction and elevated the lipid peroxidation
mechanism*“ by decreasing the NAD+/NADH level in the alcoholic
kidney.#” The enhancement of SIRT expression could play a crucial role
in encouraging the capacity of renal medullary interstitial cells to resist
oxidative stress.*® Further preclinical investigation is needed to examine
the therapeutic effect of EEBP on oxidative stress markers in alcohol-
induced CKI.

Conclusion

The findings unveil the therapeutic effect of B. pilosa in alcohol-
induced chronic kidney injury through an integrative combining of
pharmacoinformatic and in vivo studies. The histopathological analysis
revealed that EEBP treatment could improve the damage in renal
tissues. The administration of EEBP could maintain the biochemical
parameters levels, such as total cholesterol, triglyceride, creatinine,
uremic, HDL, and LDL, in alcohol kidney damage. The core genes,
consisting of PPARG, SIRT, HIF1A, and NQO1, were involved in the
mechanism of EEBP against alcoholic kidney injury through
pharmacoinformatic approaches.
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