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Introduction  

Oxidative stress occurs when there is an imbalance among 

the secretion of free radicals and the availability of antioxidants. This 

imbalance may arise either by insufficient antioxidant intake or by an 

excessive generation of free radicals. Over time, this condition can lead 

to oxidative stress resulting in various degenerative diseases, such as 

heart attacks, strokes, Alzheimer’s disease, and cancer1,2,3. Free radicals 

are very reactive molecules with unpaired electrons. Under normal 

condition, the body counteracts these reactive species by its endogenous 

antioxidant systems. However, when the internal defense mechanisms 

are insufficient, the intake of exogenous antioxidants becomes essential 

to maintain oxidative balance4. Antioxidants act by donating electrons 

to stabilize free radicals, thereby restraining their formation and 

interrupting oxidative chain reaction mechanisms. 
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Antioxidants are naturally present in a large range of foods, particularly 

in fruits, vegetables, and various spices5,6,7. Ginger is recognized as a 

crucial natural source of antioxidants owing to its strong antioxidant 

capacity. It is largely used as a therapeutic spice for managing various 

ailments, and its rhizomes are rich in bioactive substances comprising 

mostly of gingerol and shogaol, that contributes to its antioxidant 

activity8,9,10. The antioxidant capacity and total flavonoid content of red 

ginger (Zingiber officinale var. rubrum, Jahira 1 variety) extracted by 

using ethanol as extracting solvent were found to be greater than those 

of water extract11. Red ginger that has undergone fermentation into 

kombucha demonstrates strong antioxidant potential, with an IC50 

values varying based on the variation in fermentation period and the 

concentration of palm sugar used in the procedure12. Another study 

noted that the antioxidant activity of red ginger was comparable to that 

of Trolox, suggesting its potential as a natural therapeutic agent13.  

The antioxidant capacity of red ginger has been shown to mitigate 

oxidative stress, particularly during the SARS-CoV-2 pandemic14. 

Some factors can affect the antioxidant capacity of a plant extract, such 

as the extraction method, solvent type, temperature, extraction time, and 

the ratio of sample mass to solvent15. Common extraction techniques 

for red ginger include maceration, decoction, percolation, Soxhlet 

extraction, ultrasonic-assisted extraction (UAE), and microwave-

assisted extraction (MAE)16,17,18. The solvents most commonly used in 

this procedure are ethanol and water, either individually or in 

combination15,19. To achieve the greatest antioxidant capacity, the 

extraction procedure needs to be done under optimal condition.  

Optimal extraction condition can be determined utilizing the One-

Factor-at-a-Time (OFAT) approach. In this method, the impact of a 

single parameter is tested while keeping all other variables constant. 

But, this approach has some limitations, as it disregards potential 
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The body generates endogenous antioxidants to neutralize free radicals however, when these are 

insufficient, antioxidants from natural sources become essential. Among these sources, the 

rhizome of red ginger (Zingiber officinale var. rubrum) is well known for its abundance of 

phenolic substances and notable antioxidant activity. This makes it a promising material for the 

enhancement of functional ingredients and therapeutic formulations. However, the efficiency of 

extraction largely depends on the experimental conditions. This study aimed to identify the 

optimal condition for the extraction of antioxidants from red ginger utilizing the decoction 

method. To achieve this, Response Surface Methodology (RSM) with a Central Composite Design 

(CCD) was used to test how the extraction temperature, extraction time, and sample-to-solvent 

ratio collectively impact the antioxidant capacity and the precision of the predictive model. The 

One Factor at A Time (OFAT) approach was initially used to decide the midpoint values of the 

parameter used in the RSM design. The antioxidant capacity was assessed using the DPPH (2,2-

diphenyl-1-picrylhydrazyl) assay, tested utilizing a UV-visible spectrophotometer. Based on the 

RSM analysis, the optimal condition were established at 90°C for 50 minutes by a sample-to-

solvent ratio of 1:25 g/mL. The maximum antioxidant capacity achieved was 3.7811 mg AAE/g 

FW, that was closely aligned with the RSM model’s predicted value of 3.87587 mg AAE/g FW. 

The analysis of variance (ANOVA) indicated a p-value below 0.05, showing that extraction 

temperature, extraction time, and the sample-to-solvent ratio had a substantial impact on 

antioxidant capacity.  
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interactions among factors and is often neither impactful nor efficient. 

Moreover, the research outcomes are generally less representative of 

real experimental condition15,20. One parameter may interact or impact 

another, which is often overlooked in the OFAT approach. 

Nevertheless, the OFAT method can still be used to decide the midpoint 

values used in RSM. Design of Experiment (DoE) techniques, such as 

RSM and multivariate factorial designs, help overcome the limitations 

of the OFAT method. By these approaches, researchers can 

simultaneously test the impacts of multiple factors and their 

interactions. The optimal condition derived these methods (RSM and 

multivariate factorial designs) are generally more accurate, reliable, and 

efficient16. Some researchers have used RSM to determine extraction 

condition of antioxidants by various herbal plants21,22,23. The 

effectiveness of RSM in optimizing multiple extraction parameters and 

enhancing the recovery of phenolic and flavonoid compounds from 

plant-based materials further validates its robustness as a statistical 

optimization tool24. 

This study aimed at optimizing the antioxidant extraction from red 

ginger rhizomes using the RSM approach. In this study, antioxidants 

were extracted using the decoction method. This method was chosen 

because it is commonly used by the local community for consuming 

herbal plant extracts. The RSM method was used to determine the 

optimal extraction conditions for red ginger rhizomes. The studied 

parameters were extraction temperature, extraction time, and the 

sample/solvent ratio. The midpoint of the parameters in the RSM 

method was determined using the OFAT method. Design Expert 

version 13 software was used. 
 

Materials and Methods 

Materials 

Sample was sourced from Pasar Raya Padang (0°56′59″ S, 100°21′33″ 

E), located in Kampung Jao Subdistrict, Padang Barat District, Padang 

City, West Sumatra Province, Indonesia.  Analytical-grade reagents 

supplied by Merck Indonesia were used in this study, such as ascorbic 

acid, methanol, and DPPH (1,1-diphenyl-2-picrylhydrazyl).  

Equipment included a UV–Vis spectrophotometer (Thermo Scientific 

Genesys 20), an analytical balance (Mettler 200), a hot plate (Dragon 

Lab DLAB MS H280 Pro), and standard laboratory glassware (Pyrex). 

Design Expert version 13 software (Stat-Ease, Inc., Minneapolis, MN, 

USA) was also used. 
 

Sample Preparation 

The red ginger rhizomes were thoroughly washed to remove surface 

contaminants, then cut into small pieces prior to the extraction 

procedure. 
 

Sample Identification 

Whole red ginger plants, comprising the stems, leaves, and rhizomes, 

were gathered and taxonomically identified, authenticated and 

classified at the Herbarium of the Department of Biology, Faculty of 

Mathematics and Natural Sciences, University of Andalas, Indonesia as 

Zingiber officinale var. rubrum (Figure 1). A voucher specimen was set 

and deposited in the herbarium under the identification number 7111/K-

ID/ANDA/X/2024 for future reference. The red ginger plant used in this 

study was classified under the family “Zingiberaceae” and the genus 

“Zingiber” 
 

Determination of Antioxidant Capacity 

One milliliter of the sample solution was mixed with 2.5 milliliters of a 

0.1 mM DPPH solution. The mixture was then incubated in the dark for 

30 minutes. The absorbance was determined at a wavelength of 522 nm 

utilizing a UV–Vis spectrophotometer. All experiments were done in 

triplicate. The equivalent antioxidant concentration was determined 

using the standard calibration curve. 
 

The standard calibration curve of ascorbic acid 

The standard solution used was ascorbic acid. The ascorbic acid 

calibration curve was prepared using a series of concentrations (3, 6, 9, 

12, 15 mg/L). Based on this calibration curve (Figure 2), a linear 

regression equation was obtained and used to determine the equivalent 

antioxidant concentration. 
 

Determination of the Midpoint of RSM utilizing the OFAT Method 

The One-Factor-at-a-Time (OFAT) method was used to establish the 

initial design and to predict the optimal condition for the extraction 

temperature (60, 70, 80, 90, and 100 °C), extraction time (10, 20, 30, 

40, and 50 minutes), and the sample-to-solvent ratio (1:10, 1:15, 1:20, 

1:25, and 1:30 g/mL). These values served as reference points for 

subsequent optimization utilizing RSM. The independent variables 

were set and adjusted following the decoction method outlined in Table 

1. Subsequently, the antioxidant capacity experiment was repeated trice 

for each procedure to ensure the reliability of the outcomes. 
 

Optimization of extraction indicators utilizing the RSM Method 

Design-Expert software (version 13) was used to test the range of 

variables derived by the CCD and the OFAT approaches. In this 

context, the optimization procedure involved three independent 

variables, namely extraction temperature, extraction time, and the ratio 

among sample and solvent.   Each independent variable was pre-decided 

and assigned across five coded levels, namely −α, −1, 0, +1, and +α, as 

illustrated in Table 2. The antioxidant capacity served as the dependent 

variable in this study. Subsequently, the extraction procedure followed 

the experimental framework presented in Table 3 to make sure 

consistency of the designed indicators. Afterward, the antioxidant 

concentration of each sample was carefully tested. The observed 

outcomes were documented in the response column corresponding to 

each treatment. Subsequently, the response data were analyzed to 

generate the analysis of variance (ANOVA) outcomes and to construct 

the three-dimensional (3D) surface plot. Finally, the optimal extraction 

condition were classified by the numerical optimization feature of the 

software. 
 

Results and Discussion 

The standard calibration curve of ascorbic acid 

The antioxidant capacity was evaluated using an ascorbic acid 

calibration curve, which relates absorbance to concentration. The DPPH 

assay was selected due to its simplicity, low cost, sensitivity, and 

effectiveness in estimating total antioxidant content25. Ascorbic acid 

concentration was inversely proportional to absorbance, with higher 

concentrations producing lower absorbance values and a lighter purple 

color26. Increased electron or hydrogen donation from antioxidant 

compounds in red ginger extract enhanced the neutralization of DPPH 

radicals27. As the concentration of sample extract mixed with DPPH 

increased, the solution color faded due to reduction of DPPH through 

disruption of its conjugated double bonds28. The linear regression 

equation obtained was y = -0.0339x + 0.7584 with an R² value of 

0.9910, indicating strong linearity (Figure 2). Previous studies used the 

DPPH method to determine antioxidant capacity, expressed in mg 

TE/g29.  
 

Determination of the RSM Midpoint utilizing the OFAT Method 

OFAT method was used to study the impact of temperature, time, and 

the sample-to-solvent ratio on the overall extraction procedure20. The 

OFAT experiment was done to establish an appropriate range of 

condition to analyze for the RSM method15,16. The optimal condition in 

the OFAT method were classified based on the extract that exhibited 

the greatest antioxidant capacity across all variations. In this context, 

the antioxidant capacity was described as milligrams of ascorbic acid 

equivalent per gram of fresh weight (mg AAE/g FW)30,31,32. 
 

Effect of Extraction Temperature 

Temperatures play a crucial role in deciding extraction efficiency, as it 

affects solvent penetration, solute diffusion, and the release of bioactive 

components by plant matrices. In general, raising the temperature helps 

improve mass transfer and solubility, making it easier to extract 

phenolic and antioxidant compounds. However, if the temperature is 

too high, it can cause oxidation and damage heat-sensitive compounds, 

reducing the extract’s quality and antioxidant  
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Table 1: Experimental design for OFAT optimization of extraction parameters 

Variation Type Temperature (°C) Time (min) Sample-to-Solvent Ratio (g/mL) 

a. Temperature Effects 60 30 1:20 

 70 30 1:20 

 80 30 1:20 

 90 30 1:20 

 100 30 1:20 

b. Time Effects 80 10 1:20 

 80 20 1:20 

 80 30 1:20 

 80 40 1:20 

 80 50 1:20 

c. Ratio Effects 80 40 1:10 

 80 40 1:15 

 80 40 1:20 

 80 40 1:25 

 80 40 1:30 

 

Table 2: Experimental factors and coded levels used in the RSM design 

Independent Variable  −α  −1  0  +1  +α 

A. Temperature (°C)  63  70  80  90  97 

           B. Time (min)            23            30            40            50            57 

 C. Ratio (g/mL)  1:12  1:15  1:20  1:25  1:28 
 

Note: (−α) = Lower axial point; (−1) = Lower limit; (0) = Center point; (+1) = Upper limit; (+α) = Upper axial point. 

 

Table 3: Experimental design matrix using RSM-CCD method 

Run    Temperature (°C)      Time (min)       Ratio (g/mL) 

1   70    30   1:15 

2   63    40   1:20 

3   80    40   1:20 

4   80    40   1:20 

5   80    40   1:12 

6   80    40   1:20 

7   70    50   1:15 

8   80    23   1:20 

9   97    40   1:20 

10   90    30   1:15 

11   80    40   1:28 

12   90    30   1:25 

13   80    40   1:20 

14   70    30   1:25 

15   90    50   1:15 

16   80    40   1:20 

17   90    50   1:25 

18   80    57   1:20 

19   70    50   1:25 

20   80    40   1:20 

A = Temperature; B = Time; C = Sample-to-solvent ratio. 
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Table 4: Experimental results of antioxidant capacity from red ginger rhizome extraction using the RSM-CCD method. 

Run Temperature (°C) Time (min) Sample-to-Solvent Ratio (g/mL) Antioxidant capacity (mg AAE/g FW) 

1 70 30 1:15 2.2808 

2 63 40 1:20 1.9416 

3 80 40 1:20 2.8435 

4 80 40 1:20 2.8262 

5 80 40 1:12 2.5263 

6 80 40 1:20 2.8973 

7 70 50 1:15 2.5244 

8 80 23 1:20 2.6079 

9 97 40 1:20 3.4564 

10 90 30 1:15 2.7431 

11 80 40 1:28 3.1819 

12 90 30 1:25 3.2612 

13 80 40 1:20 2.8385 

14 70 30 1:25 2.1256 

15 90 50 1:15 2.9238 

16 80 40 1:20 2.7617 

17 90 50 1:25 3.8922 

18 80 57 1:20 3.0637 

19 70 50 1:25 2.4927 

20 80 40 1:20 2.7788 

 

Table 5:  ANOVA results of the second-order (2FI) model for antioxidant capacity 

Source Sum of Squares df Mean Square F-value p-value Significance 

Model 3.76 6 0.6262 112.71 <0.0001 Significant 

A (Temp) 2.59 1 2.59 465.72 <0.0001 Significant 

B (Time) 0.3509 1 0.3509 63.16 <0.0001 Significant 

C (Ratio) 0.4226 1 0.4226 76.06 <0.0001 Significant 

AB 0.0051 1 0.0051 0.92 0.3512 Not Significant 

AC 0.1057 1 0.1057 18.87 0.0007 Significant 

BC 0.1515 1 0.1515 27.01 0.0002 Significant 

Lack of Fit 0.0291 3 0.0097 2.12 0.1096 Not Significant 

Pure Error 0.0275 6 0.0046    

Total 3.816 19     

A: Temperature, B: Time, C: Sample-to-solvent ratio. 

A p-value < 0.05 indicates statistical significance, while a p-value > 0.05 indicates non-significance
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Table 6: Model fit statistics for the quadratic regression model. 

Statistic Value 

Standard Deviation (Std. dev) 0.0745 

Mean 2.80 

Coefficient of Variation (CV, %) 2.66 

R² 0.9811 

Adjusted R² 0.9724 

A low CV (2.66%) indicates high precision and reproducibility of the experimental data. 

The high R² (0.9811) and Adj-R² (0.9724) confirm that the regression model explains the variability of the data with strong predictive accuracy. 

 

  

Figure 1: Red ginger plant and red ginger rhizome.

  

 

Figure 2: The Calibration Standard Curve of Ascorbic Acid 

 

power. Therefore, keeping the temperature at the right level is crucial 

to get a high yield while keeping the active compounds stable33.  

Extraction temperature exhibited a significant impact on the antioxidant 

capacity of red ginger rhizomes (p < 0.05). As illustrated in Figure 3a, 

the antioxidant concentration improved markedly by rising temperature, 

reaching its peak value at 80 °C (2.44 mg AAE/g FW). Beyond this 

point, a further increase in temperature results in a gradual decrease in 

antioxidant capacity. Also, at an extraction temperature of 90 °C and 

100 °C, the antioxidant capacity reduced, probably because the active 

y = -0.0339x + 0.7584
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compounds were damaged by excessive heat owing to the increased 

temperature.  

The experimental indicators considered in this study outlined solvent 

concentration (0–100%), extraction temperature (30-60 °C), and 

extraction time (1-6 hours). Under these conditions, the optimal 

Figure 3: Effect of extraction parameters on the antioxidant capacity of red ginger rhizome determined using OFAT method: (a) 

extraction temperature, (b) extraction time, and (c) sample-to-solvent ratio. 
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Figure 4: Three-dimensional response surface plots showing the interaction effects of extraction temperature, extraction time, and 

sample-to-solvent ratio on the antioxidant capacity of red ginger rhizome. 

 

(a)         (b)

  

Figure 5: Optimum extraction conditions for antioxidant capacity of red ginger rhizome: (a) effect of temperature, (b) effect of time, (c) 

effect of sample-to-solvent ratio, and (d) predicted maximum antioxidant capacity. 
 

 extraction performance was reached utilizing a solvent concentration 

of 100%, an extraction temperature of 30 °C, and a time of 6 hours34. 

An extraction temperature of 85 °C has been noted to produce the 

greatest yield of antioxidant substances, primarily due to the improved 

solubility and diffusion of phenolic constituents inside the solvent 

matrix. However, when the temperature was further elevated to 90-100 

°C, the extraction efficiency began to decrease – this was likely 

attributed to the thermal degradation and oxidative breakdown of heat-

sensitive bioactive substances35. 

Previous study has shown the optimal temperature for enhancing the 

antioxidant activity of Echinacea purpurea. The research employed a 

temperature range of 25 to 75°C, and the peak antioxidant activity of 

56.94 % was observed at an optimal extraction temperature of 75°C32. 

According to Reblová, antioxidant activity tends to decrease as the 

temperature increases within the range of 90-150 °C. Moreover, certain 

phenolic substances such as gallic and caffeic acids exhibit a more 

gradual reduction in their activity under these condition36. Other 

researchers have found the same optimal extraction temperature in the 

extraction of antioxidants of matcha (Camellia sinensis)37, Pinus 

radiata bark38, avocado and okra seeds39.  

A comparable trend was observed in the extraction of Momordica 

charantia leaves, where a gradual increase in temperature improved the 

solubility of phenolic and flavonoid substances up to an optimal point. 

Beyond this temperature, thermal degradation became evident at greater 

levels. The optimum extraction condition was noted at approximately 

72°C, yielding the greatest antioxidant capacity, whereas further 

heating resulted in decreased stability and recovery of bioactive 

substances40.  
 

Effect of Extraction Time 

Extraction time plays a crucial role in determining how much 

antioxidant compound can dissolve in the solvent and affects the overall 

efficiency. If the extraction time is too short, some antioxidants may not 

be extracted, giving a lower yield. On the other hand, if it takes too long, 

the active compounds may get damaged or broken down, reducing their 

quality41,42. Therefore, identifying the optimal extraction time is 

essential to ensure that the maximum antioxidant capacity can be 

attained.  

Extraction time significantly impacted the amount of antioxidant 

substances released into the solvent (p < 0.05). In this experiment, the 

extraction time was varied from 10 to 50 minutes, while the temperature 

was kept constant at 80 °C and the sample-to-solvent ratio set at 1:20 

g/mL. As illustrated in Figure 3b, the antioxidant capacity gradually 

improved at 10 and 40 minutes of extraction. This improvement was 

attributed to the extended contact among the red ginger matrix and the 

solvent, which promotes greater solubility of antioxidant constituents. 

However, as the extraction time approached 50 minutes, a decrease in 

antioxidant capacity was observed, most likely due to the degradation 

or structural damage of the antioxidant substances present in red 

ginger41. The optimal extraction time was observed to be 40 minutes, 

producing an antioxidant capacity of 2.7621 mg AAE/g FW. These 

outcomes were consistent with previous studies that noted that the 

extraction periods of approximately 40-42 minutes yielded the greatest 

antioxidant activity. At this point, solvent-solute equilibrium is reached, 

allowing maximum diffusion of antioxidant substances while 

minimizing the thermal degradation of heat-sensitive constituents43,44. 

However, Wani et al. 45 found an optimal extraction time of 37.02 

minutes for sea buckthorn leaf extraction, while Nguyen et al. 46 found 

an optimal time of 49 minutes for Polygonum multiflorum Thunb. root 

extraction  in Vietnam. The optimal extraction time of 40 minutes 

observed in this experiment was chosen as the central point for the RSM 

design. In this context, 30 minutes was designated as the lower limit (-

1), while 50 minutes served as the upper limit (+1) to ensure a balanced 

parameter variation within the experimental range. 
 

Effect of Sample-Solvent Ratio 

To obtain the greatest antioxidant capacity the optimal sample-to-

solvent ratio must be considered47,48. In this study, various sample-to-

solvent ratios such as 1:10, 1:15, 1:20, 1:25, and 1:30 g/mL were 

evaluated under controlled condition. The extraction temperature was 

kept at 80 °C, and the time was set to 40 minutes, corresponding to the 

optimal indicators observed in the preceding experiments. As illustrated 

in Figure 3c, the antioxidant capacity improved progressively with 

greater sample-to-solvent ratios, reaching its maximum value at 1:20 

g/mL which represents the optimal condition. This condition produced 

an antioxidant capacity of 2.8037 mg AAE/g FW. Increasing the solvent 

volume to the optimal ratio enhanced the efficiency of active compound 

extraction, primarily because a larger solvent volume improves the 

dissolution of antioxidant constituents. However, when the ratio 

exceeded this optimal point, a decrease in antioxidant capacity was 

observed. Consistent with previous outcomes, an increase in solvent 

volume promotes compound diffusion only up to an optimal ratio 

approximately 1:20 g/mL beyond this excessive dilution a reduced mass 

transfer efficiency give rise to diminished antioxidant activity49. 

The optimal ratio of 1:20 g/mL was also observed by Majeed in the 

extraction of Origanum vulgare50, by Rezaei et al. in the extraction of 

apple pomace51, and by Tourabi et al. in the extraction of Mentha 

longifolia52. 
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Optimal Conditions for Red Ginger Rhizome Extraction Using the RSM 

Method 

The optimal extraction condition for red ginger were determined by 

varying the temperature, time, and sample-to-solvent ratio53,54. The 

experimental design based on RSM is presented in Table 4. A total of 

twenty experimental runs were done, involving three independent 

variables: extraction temperature (63-97 °C), extraction time (23-57 

minutes), and sample-to-solvent ratio (1:11-1:28 g/mL). The dependent 

variable analyzed in this study was the antioxidant capacity, described 

as milligrams of ascorbic acid equivalent per gram of fresh weight (mg 

AAE/g FW). Across all treatments, the antioxidant capacity ranged 

from 1.9416 to 3.8922 mg AAE/g FW. The lowest extraction yield was 

obtained at 63 °C for 40 minutes using a sample-to-solvent ratio of 1:20 

g/mL. In contrast, the highest yield was reached at 90 °C for 50 minutes 

with a ratio of 1:25 g/mL. To check how accurate and reliable the model 

was, an analysis of variance (ANOVA) was carried out using Design-

Expert software version 13.  

The model’s suitability was tested using several statistical indicators, 

including the F-value, p-value, coefficient of determination (R²), 

adjusted R², and coefficient of variation (CV). Table 5 describes the 

proposed regression model for the response variable, which is 

antioxidant capacity. In this case, the RSM uses a two-factor interaction 

(2FI) regression model to identify and evaluate how the experimental 

factors interact with each other. The ANOVA results show that the 

predictive model is statistically significant and could explain the data 

variation, as indicated by a high F-value and a very low p-value (p < 

0.0001). In this case, the main factors—extraction temperature, 

extraction time, and sample-to-solvent ratio—have a strong effect on 

the extraction of antioxidant compounds, with all p-values below 

0.0001. In addition, variables A, B, and C represent temperature, 

extraction time, and the sample-to-solvent ratio respectively, showing 

their direct effect in the regression model.  In addition, substantial 

interactions were found between some variables, especially between 

temperature and the sample-to-solvent ratio, as well as between 

extraction time and the sample-to-solvent ratio (p < 0.05). This means 

that certain combinations of these factors strongly affect antioxidant 

levels. However, the interaction between temperature and extraction 

time was not significant, as shown by p-values greater than 0.0555. This 

means that this combination does not affect antioxidant capacity. The 

Lack of Fit (LOF) value describes how well the model fits the 

experimental data. The LOF p-value is 0.1096 (p > 0.05), which means 

it is not significant56.The model is consistent by the experimental data 

and can be used to predict ideal extraction situation.  

Table 6 describes the model fit statistics for the quadratic regression 

model. The coefficient of variation (CV) describes how precise and 

consistent the model is, as it measures how much the data vary 

compared to the average value. In this case, a CV of 2.66% describes 

very little variation, meaning the model accurately represents the 

observed changes in antioxidant levels during extraction. The 

coefficient of determination (R²) reflects the ratio of data variability that 

can be described by the regression model. In this study, the R² value 

fulfilled was 0.9811. A value approaching 1 suggests that the linear 

regression model provides a strong explanatory fit, describing that 

approximately 98.11% of the response variation is accounted for by the 

experimental factors tested57. The adjusted coefficient of determination 

(adj R²) describes how well the added independent variables improve 

the model’s ability to explain the results without making it too complex. 

In this study, the adj R² value of 0.9724 means that about 97.24% of the 

changes in the dependent variable can be described by the regression 

model, after considering the number of variables used in the analysis58. 

Therefore, the RSM method is helpful for finding the best extraction 

conditions to increase antioxidant levels in red ginger. Figure 3 

describes a 3D response surface plot that explains how two independent 

variables relate to one dependent variable in the experiment. The third 

independent variable is not shown in the graph; it is kept constant at its 

middle value, marked by the red point in the center of the plot. This 

graph describes how the factors interact and how their combinations 

affect the result. In this case, the figure helps explain how changes in 

factors like extraction time, temperature, and sample-to-solvent ratio 

together impact the amount of antioxidants. The color patterns on the 

graph show changes in antioxidant levels caused by the interaction 

between the two independent variables. Figure 4a describes how 

temperature (A) and extraction time (B) relate to each other and affect 

antioxidant levels. Both factors seem to increase antioxidant content, 

but temperature has a stronger effect, shown by the steeper slope of the 

surface plot and the shift toward green colors. Conversely, extraction 

time exhibited a relatively smaller impact, as evidenced by the flatter 

slope and the predominance of blue tones on the surface plot. Figure 4b 

describes how temperature and the sample-to-solvent ratio interact, and 

together affect antioxidant levels. In this case, increasing both variables 

led to higher reaction activity. However, temperature had a stronger 

effect, shown by the steeper curve and the change toward yellow-green 

colors. In contrast, the sample-to-solvent ratio displayed a gentler slope 

accompanied by a green-to-blue color gradient, describing a mild 

impact on the response. Figure 4c illustrates the connection between 

extraction time and solvent volume in relation to antioxidant capacity. 

Both indicators show an increase in response, though by a relatively 

gentle slope. The predominance of green tones on the surface plot 

suggests a moderate level of antioxidant activity. Overall, Figure 5 

describes the best conditions for the three main variables based on the 

RSM analysis. Figure 5a describes the optimal temperature of 90 °C, 

Figure 5b describes the best extraction time of 50 minutes, and Figure 

4c describes the ideal sample-to-solvent ratio of 1:25 g/mL or solvent 

volume of 125 mL. Figure 5d describes the predicted antioxidant level, 

which reached 3.87587 mg AAE/g FW, as seen from the upward trend 

in the response curve. Under the best extraction conditions found using 

the RSM method, the tested antioxidant level was 3.7811 mg AAE/g 

FW. The relative standard deviation (RSD) between the predicted and 

actual values was 2.44%, which is well below the 5% limit. This small 

difference describes that the predicted results match the experimental 

data well, proving that the model is accurate and reliable in showing 

real observations.57,58. These results show that the model is quite 

accurate in predicting antioxidant levels. 
 

Conclusion  

The optimal extraction condition for red ginger Rhizomes were 

determined via the OFAT method and the optimal conditions were a 

temperature of 80°C, an extraction time of 40 minutes, and a sample-

to-solvent ratio of 1 g per 20 mL. Under these conditions, the 

antioxidant capacity was 2.8037 mg AAE/g FW. In contrast, 

optimization utilizing the RSM described slightly different conditions, 

i.e. an optimal temperature of 90 °C, an extraction time of 50 minutes, 

and a sample-to-solvent ratio of 1:25 g/mL. These condition gave the 

highest antioxidant capacity, reaching 3.7811 mg AAE/g FW. The 

outcomes of this study reaffirm the effectiveness of RSM as a predictive 

model in enhancing the extraction efficiency of total antioxidant 

capacity of red ginger rhizomes. Furthermore, future research should 

emphasize on scaling-up this procedure to assess its feasibility for 

industrial applications, as well as the evaluation of antioxidant stability 

during storage. Also, a more comprehensive investigation into the 

bioactive compositions and biological properties of the extract may 

yield valuable insights into its potential utilization in food, 

pharmaceutical, and nutraceutical formulations. 
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