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The body generates endogenous antioxidants to neutralize free radicals however, when these are
insufficient, antioxidants from natural sources become essential. Among these sources, the
rhizome of red ginger (Zingiber officinale var. rubrum) is well known for its abundance of
phenolic substances and notable antioxidant activity. This makes it a promising material for the
enhancement of functional ingredients and therapeutic formulations. However, the efficiency of
extraction largely depends on the experimental conditions. This study aimed to identify the
optimal condition for the extraction of antioxidants from red ginger utilizing the decoction
method. To achieve this, Response Surface Methodology (RSM) with a Central Composite Design
(CCD) was used to test how the extraction temperature, extraction time, and sample-to-solvent
ratio collectively impact the antioxidant capacity and the precision of the predictive model. The
One Factor at A Time (OFAT) approach was initially used to decide the midpoint values of the
parameter used in the RSM design. The antioxidant capacity was assessed using the DPPH (2,2-
diphenyl-1-picrylhydrazyl) assay, tested utilizing a UV-visible spectrophotometer. Based on the
RSM analysis, the optimal condition were established at 90°C for 50 minutes by a sample-to-
solvent ratio of 1:25 g/mL. The maximum antioxidant capacity achieved was 3.7811 mg AAE/g
FW, that was closely aligned with the RSM model’s predicted value of 3.87587 mg AAE/g FW.
The analysis of variance (ANOVA) indicated a p-value below 0.05, showing that extraction
temperature, extraction time, and the sample-to-solvent ratio had a substantial impact on
antioxidant capacity.

Keywords: Red ginger rhizome, Optimal condition, Antioxidant capacity, 2,2-diphenyl-1-
picrylhydrazyl assay, Response Surface Methodology, Central Composite Design.

Introduction

Antioxidants are naturally present in a large range of foods, particularly
in fruits, vegetables, and various spices®®’. Ginger is recognized as a

Oxidative stress occurs when there is an imbalance among
the secretion of free radicals and the availability of antioxidants. This
imbalance may arise either by insufficient antioxidant intake or by an
excessive generation of free radicals. Over time, this condition can lead
to oxidative stress resulting in various degenerative diseases, such as
heart attacks, strokes, Alzheimer’s disease, and cancer™22. Free radicals
are very reactive molecules with unpaired electrons. Under normal
condition, the body counteracts these reactive species by its endogenous
antioxidant systems. However, when the internal defense mechanisms
are insufficient, the intake of exogenous antioxidants becomes essential
to maintain oxidative balance*. Antioxidants act by donating electrons
to stabilize free radicals, thereby restraining their formation and
interrupting oxidative chain reaction mechanisms.
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crucial natural source of antioxidants owing to its strong antioxidant
capacity. It is largely used as a therapeutic spice for managing various
ailments, and its rhizomes are rich in bioactive substances comprising
mostly of gingerol and shogaol, that contributes to its antioxidant
activity®®10, The antioxidant capacity and total flavonoid content of red
ginger (Zingiber officinale var. rubrum, Jahira 1 variety) extracted by
using ethanol as extracting solvent were found to be greater than those
of water extract'’. Red ginger that has undergone fermentation into
kombucha demonstrates strong antioxidant potential, with an ICso
values varying based on the variation in fermentation period and the
concentration of palm sugar used in the procedure!?. Another study
noted that the antioxidant activity of red ginger was comparable to that
of Trolox, suggesting its potential as a natural therapeutic agent?2.

The antioxidant capacity of red ginger has been shown to mitigate
oxidative stress, particularly during the SARS-CoV-2 pandemict.
Some factors can affect the antioxidant capacity of a plant extract, such
as the extraction method, solvent type, temperature, extraction time, and
the ratio of sample mass to solvent'>, Common extraction techniques
for red ginger include maceration, decoction, percolation, Soxhlet
extraction, ultrasonic-assisted extraction (UAE), and microwave-
assisted extraction (MAE)*6.1"18 The solvents most commonly used in
this procedure are ethanol and water, either individually or in
combination’>!®. To achieve the greatest antioxidant capacity, the
extraction procedure needs to be done under optimal condition.
Optimal extraction condition can be determined utilizing the One-
Factor-at-a-Time (OFAT) approach. In this method, the impact of a
single parameter is tested while keeping all other variables constant.
But, this approach has some limitations, as it disregards potential
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interactions among factors and is often neither impactful nor efficient.
Moreover, the research outcomes are generally less representative of
real experimental condition'®2?°, One parameter may interact or impact
another, which is often overlooked in the OFAT approach.
Nevertheless, the OFAT method can still be used to decide the midpoint
values used in RSM. Design of Experiment (DoE) techniques, such as
RSM and multivariate factorial designs, help overcome the limitations
of the OFAT method. By these approaches, researchers can
simultaneously test the impacts of multiple factors and their
interactions. The optimal condition derived these methods (RSM and
multivariate factorial designs) are generally more accurate, reliable, and
efficient's. Some researchers have used RSM to determine extraction
condition of antioxidants by various herbal plants®*??2%, The
effectiveness of RSM in optimizing multiple extraction parameters and
enhancing the recovery of phenolic and flavonoid compounds from
plant-based materials further validates its robustness as a statistical
optimization tool?.

This study aimed at optimizing the antioxidant extraction from red
ginger rhizomes using the RSM approach. In this study, antioxidants
were extracted using the decoction method. This method was chosen
because it is commonly used by the local community for consuming
herbal plant extracts. The RSM method was used to determine the
optimal extraction conditions for red ginger rhizomes. The studied
parameters were extraction temperature, extraction time, and the
sample/solvent ratio. The midpoint of the parameters in the RSM
method was determined using the OFAT method. Design Expert
version 13 software was used.

Materials and Methods

Materials

Sample was sourced from Pasar Raya Padang (0°56'59” S, 100°21'33”
E), located in Kampung Jao Subdistrict, Padang Barat District, Padang
City, West Sumatra Province, Indonesia. Analytical-grade reagents
supplied by Merck Indonesia were used in this study, such as ascorbic
acid, methanol, and DPPH (1,1-diphenyl-2-picrylhydrazyl).
Equipment included a UV-Vis spectrophotometer (Thermo Scientific
Genesys 20), an analytical balance (Mettler 200), a hot plate (Dragon
Lab DLAB MS H280 Pro), and standard laboratory glassware (Pyrex).
Design Expert version 13 software (Stat-Ease, Inc., Minneapolis, MN,
USA) was also used.

Sample Preparation

The red ginger rhizomes were thoroughly washed to remove surface
contaminants, then cut into small pieces prior to the extraction
procedure.

Sample Identification

Whole red ginger plants, comprising the stems, leaves, and rhizomes,
were gathered and taxonomically identified, authenticated and
classified at the Herbarium of the Department of Biology, Faculty of
Mathematics and Natural Sciences, University of Andalas, Indonesia as
Zingiber officinale var. rubrum (Figure 1). A voucher specimen was set
and deposited in the herbarium under the identification number 7111/K-
ID/ANDA/X/2024 for future reference. The red ginger plant used in this
study was classified under the family “Zingiberaceae” and the genus
“Zingiber”

Determination of Antioxidant Capacity

One milliliter of the sample solution was mixed with 2.5 milliliters of a
0.1 mM DPPH solution. The mixture was then incubated in the dark for
30 minutes. The absorbance was determined at a wavelength of 522 nm
utilizing a UV-Vis spectrophotometer. All experiments were done in
triplicate. The equivalent antioxidant concentration was determined
using the standard calibration curve.

The standard calibration curve of ascorbic acid

The standard solution used was ascorbic acid. The ascorbic acid
calibration curve was prepared using a series of concentrations (3, 6, 9,
12, 15 mg/L). Based on this calibration curve (Figure 2), a linear
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regression equation was obtained and used to determine the equivalent
antioxidant concentration.

Determination of the Midpoint of RSM utilizing the OFAT Method

The One-Factor-at-a-Time (OFAT) method was used to establish the
initial design and to predict the optimal condition for the extraction
temperature (60, 70, 80, 90, and 100 °C), extraction time (10, 20, 30,
40, and 50 minutes), and the sample-to-solvent ratio (1:10, 1:15, 1:20,
1:25, and 1:30 g/mL). These values served as reference points for
subsequent optimization utilizing RSM. The independent variables
were set and adjusted following the decoction method outlined in Table
1. Subsequently, the antioxidant capacity experiment was repeated trice
for each procedure to ensure the reliability of the outcomes.

Optimization of extraction indicators utilizing the RSM Method
Design-Expert software (version 13) was used to test the range of
variables derived by the CCD and the OFAT approaches. In this
context, the optimization procedure involved three independent
variables, namely extraction temperature, extraction time, and the ratio
among sample and solvent. Each independent variable was pre-decided
and assigned across five coded levels, namely —o, —1, 0, +1, and +a, as
illustrated in Table 2. The antioxidant capacity served as the dependent
variable in this study. Subsequently, the extraction procedure followed
the experimental framework presented in Table 3 to make sure
consistency of the designed indicators. Afterward, the antioxidant
concentration of each sample was carefully tested. The observed
outcomes were documented in the response column corresponding to
each treatment. Subsequently, the response data were analyzed to
generate the analysis of variance (ANOVA) outcomes and to construct
the three-dimensional (3D) surface plot. Finally, the optimal extraction
condition were classified by the numerical optimization feature of the
software.

Results and Discussion

The standard calibration curve of ascorbic acid

The antioxidant capacity was evaluated using an ascorbic acid
calibration curve, which relates absorbance to concentration. The DPPH
assay was selected due to its simplicity, low cost, sensitivity, and
effectiveness in estimating total antioxidant content?®. Ascorbic acid
concentration was inversely proportional to absorbance, with higher
concentrations producing lower absorbance values and a lighter purple
color?®®. Increased electron or hydrogen donation from antioxidant
compounds in red ginger extract enhanced the neutralization of DPPH
radicals?’. As the concentration of sample extract mixed with DPPH
increased, the solution color faded due to reduction of DPPH through
disruption of its conjugated double bonds?®. The linear regression
equation obtained was y = -0.0339x + 0.7584 with an R? value of
0.9910, indicating strong linearity (Figure 2). Previous studies used the
DPPH method to determine antioxidant capacity, expressed in mg
TE/g®.

Determination of the RSM Midpoint utilizing the OFAT Method

OFAT method was used to study the impact of temperature, time, and
the sample-to-solvent ratio on the overall extraction procedure®. The
OFAT experiment was done to establish an appropriate range of
condition to analyze for the RSM method*®6. The optimal condition in
the OFAT method were classified based on the extract that exhibited
the greatest antioxidant capacity across all variations. In this context,
the antioxidant capacity was described as milligrams of ascorbic acid
equivalent per gram of fresh weight (mg AAE/g FW)30:3132,

Effect of Extraction Temperature

Temperatures play a crucial role in deciding extraction efficiency, as it
affects solvent penetration, solute diffusion, and the release of bioactive
components by plant matrices. In general, raising the temperature helps
improve mass transfer and solubility, making it easier to extract
phenolic and antioxidant compounds. However, if the temperature is
too high, it can cause oxidation and damage heat-sensitive compounds,
reducing the extract’s quality and antioxidant
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Table 1: Experimental design for OFAT optimization of extraction parameters

Variation Type

Temperature (°C) Time (min) Sample-to-Solvent Ratio (g/mL)

a. Temperature Effects

b. Time Effects

c. Ratio Effects

60
70
80
90
100
80
80
80
80
80
80
80
80
80
80

30
30
30
30
30
10
20
30
40
50
40
40
40
40
40

1:20
1:20
1:20
1:20
1:20
1:20
1:20
1:20
1:20
1:20
1:10
1:15
1:20
1:25
1:30

Table 2: Experimental factors and coded levels used in the RSM design

Independent Variable - -1 0 +1 +a
A. Temperature (°C) 63 70 80 90 97
B. Time (min) 23 30 40 50 57
C. Ratio (g/mL) 1:12 1:15 1:20 1:25 1:28

Note: (—a) = Lower axial point; (—1) = Lower limit; (0) = Center point; (+1) = Upper limit; (+a) = Upper axial point.

Table 3: Experimental design matrix using RSM-CCD method

Run Temperature (°C) Time (min) Ratio (g/mL)
1 70 30 1:15
2 63 40 1:20
3 80 40 1:20
4 80 40 1:20
5 80 40 1:12
6 80 40 1:20
7 70 50 1:15
8 80 23 1:20
9 97 40 1:20
10 90 30 1:15
11 80 40 1:28
12 90 30 1:25
13 80 40 1:20
14 70 30 1:25
15 90 50 1:15
16 80 40 1:20
17 90 50 1:25
18 80 57 1:20
19 70 50 1:25
20 80 40 1:20

A = Temperature; B = Time; C = Sample-to-solvent ratio.

© 2026 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License
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Table 4: Experimental results of antioxidant capacity from red ginger rhizome extraction using the RSM-CCD method.
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Run Temperature (°C) Time (min)

Sample-to-Solvent Ratio (g/mL)

Antioxidant capacity (mg AAE/g FW)

1 70
2 63
3 80
4 80
5 80
6 80
7 70
8 80
9 97
10 90
11 80
12 90
13 80
14 70
15 90
16 80
17 90
18 80
19 70
20 80

30
40
40
40
40
40
50
23
40
30
40
30
40
30
50
40
50
57
50
40

1:15
1:20
1:20
1:20
1:12
1:20
1:15
1:20
1:20
1:15
1:28
1:25
1:20
1:25
1:15
1:20
1:25
1:20
1:25
1:20

2.2808
1.9416
2.8435
2.8262
2.5263
2.8973
2.5244
2.6079
3.4564
2.7431
3.1819
3.2612
2.8385
2.1256
2.9238
2.7617
3.8922
3.0637
2.4927
2.7788

Table 5: ANOVA results of the second-order (2FI) model for antioxidant capacity

Source Sum of Squares df Mean Square F-value p-value Significance
Model 3.76 6 0.6262 112.71 <0.0001 Significant
A (Temp) 2.59 1 2.59 465.72 <0.0001 Significant
B (Time) 0.3509 1 0.3509 63.16 <0.0001 Significant
C (Ratio) 0.4226 1 0.4226 76.06 <0.0001 Significant
AB 0.0051 1 0.0051 0.92 0.3512  Not Significant
AC 0.1057 1 0.1057 18.87 0.0007 Significant
BC 0.1515 1 0.1515 27.01 0.0002 Significant
Lack of Fit 0.0291 3 0.0097 212 0.1096  Not Significant
Pure Error 0.0275 6 0.0046
Total 3.816 19

© 2026 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License

A: Temperature, B: Time, C: Sample-to-solvent ratio.
A p-value < 0.05 indicates statistical significance, while a p-value > 0.05 indicates non-significance
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Table 6: Model fit statistics
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for the quadratic regression model.

Statistic

Value

Standard Deviation (Std. dev) 0.0745

Mean

2.80

Coefficient of Variation (CV, %) 2.66

R2

Adjusted R?

0.9811
0.9724

A low CV (2.66%) indicates high precision and reproducibility of the experimental data.
The high R2 (0.9811) and Adj-R? (0.9724) confirm that the regression model explains the variability of the data with strong predictive accuracy.

Figure 1: Red ginger plant and red ginger rhizome.
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Figure 2: The Calibration Standard Curve of Ascorbic Acid

power. Therefore, keeping the temperature at the right level is crucial
to get a high yield while keeping the active compounds stable®®.

Extraction temperature exhibited a significant impact on the antioxidant
capacity of red ginger rhizomes (p < 0.05). As illustrated in Figure 3a,
the antioxidant concentration improved markedly by rising temperature,

reaching its peak value at 80 °C (2.44 mg AAE/g FW). Beyond this
point, a further increase in temperature results in a gradual decrease in
antioxidant capacity. Also, at an extraction temperature of 90 °C and
100 °C, the antioxidant capacity reduced, probably because the active
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compounds were damaged by excessive heat owing to the increased
temperature.
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The experimental indicators considered in this study outlined solvent
concentration (0-100%), extraction temperature (30-60 °C), and
extraction time (1-6 hours). Under these conditions, the optimal
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Figure 3: Effect of extraction parameters on the antioxidant capacity of red ginger rhizome determined using OFAT method: (a)
extraction temperature, (b) extraction time, and (c) sample-to-solvent ratio.
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Figure 4: Three-dimensional response surface plots showing the interaction effects of extraction temperature, extraction time, and
sample-to-solvent ratio on the antioxidant capacity of red ginger rhizome.
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Figure 5: Optimum extraction conditions for antioxidant capacity of red ginger rhizome: (a) effect of temperature, (b) effect of time, (c)
effect of sample-to-solvent ratio, and (d) predicted maximum antioxidant capacity.

extraction performance was reached utilizing a solvent concentration
of 100%, an extraction temperature of 30 °C, and a time of 6 hours®.
An extraction temperature of 85 °C has been noted to produce the
greatest yield of antioxidant substances, primarily due to the improved
solubility and diffusion of phenolic constituents inside the solvent
matrix. However, when the temperature was further elevated to 90-100
°C, the extraction efficiency began to decrease — this was likely
attributed to the thermal degradation and oxidative breakdown of heat-
sensitive bioactive substances®.

Previous study has shown the optimal temperature for enhancing the
antioxidant activity of Echinacea purpurea. The research employed a
temperature range of 25 to 75°C, and the peak antioxidant activity of
56.94 % was observed at an optimal extraction temperature of 75°C%2.
According to Reblov4, antioxidant activity tends to decrease as the
temperature increases within the range of 90-150 °C. Moreover, certain
phenolic substances such as gallic and caffeic acids exhibit a more
gradual reduction in their activity under these condition®. Other
researchers have found the same optimal extraction temperature in the
extraction of antioxidants of matcha (Camellia sinensis)®’, Pinus
radiata bark®, avocado and okra seeds®.

A comparable trend was observed in the extraction of Momordica
charantia leaves, where a gradual increase in temperature improved the
solubility of phenolic and flavonoid substances up to an optimal point.
Beyond this temperature, thermal degradation became evident at greater
levels. The optimum extraction condition was noted at approximately
72°C, yielding the greatest antioxidant capacity, whereas further
heating resulted in decreased stability and recovery of bioactive
substances*.

Effect of Extraction Time

Extraction time plays a crucial role in determining how much
antioxidant compound can dissolve in the solvent and affects the overall
efficiency. If the extraction time is too short, some antioxidants may not
be extracted, giving a lower yield. On the other hand, if it takes too long,
the active compounds may get damaged or broken down, reducing their
quality**#2. Therefore, identifying the optimal extraction time is
essential to ensure that the maximum antioxidant capacity can be
attained.

Extraction time significantly impacted the amount of antioxidant
substances released into the solvent (p < 0.05). In this experiment, the
extraction time was varied from 10 to 50 minutes, while the temperature
was kept constant at 80 °C and the sample-to-solvent ratio set at 1:20
g/mL. As illustrated in Figure 3b, the antioxidant capacity gradually
improved at 10 and 40 minutes of extraction. This improvement was

attributed to the extended contact among the red ginger matrix and the
solvent, which promotes greater solubility of antioxidant constituents.
However, as the extraction time approached 50 minutes, a decrease in
antioxidant capacity was observed, most likely due to the degradation
or structural damage of the antioxidant substances present in red
ginger*'. The optimal extraction time was observed to be 40 minutes,
producing an antioxidant capacity of 2.7621 mg AAE/g FW. These
outcomes were consistent with previous studies that noted that the
extraction periods of approximately 40-42 minutes yielded the greatest
antioxidant activity. At this point, solvent-solute equilibrium is reached,
allowing maximum diffusion of antioxidant substances while
minimizing the thermal degradation of heat-sensitive constituents*344,
However, Wani et al. % found an optimal extraction time of 37.02
minutes for sea buckthorn leaf extraction, while Nguyen et al. “6 found
an optimal time of 49 minutes for Polygonum multiflorum Thunb. root
extraction in Vietnam. The optimal extraction time of 40 minutes
observed in this experiment was chosen as the central point for the RSM
design. In this context, 30 minutes was designated as the lower limit (-
1), while 50 minutes served as the upper limit (+1) to ensure a balanced
parameter variation within the experimental range.

Effect of Sample-Solvent Ratio

To obtain the greatest antioxidant capacity the optimal sample-to-
solvent ratio must be considered*”*, In this study, various sample-to-
solvent ratios such as 1:10, 1:15, 1:20, 1:25, and 1:30 g/mL were
evaluated under controlled condition. The extraction temperature was
kept at 80 °C, and the time was set to 40 minutes, corresponding to the
optimal indicators observed in the preceding experiments. As illustrated
in Figure 3c, the antioxidant capacity improved progressively with
greater sample-to-solvent ratios, reaching its maximum value at 1:20
g/mL which represents the optimal condition. This condition produced
an antioxidant capacity of 2.8037 mg AAE/g FW. Increasing the solvent
volume to the optimal ratio enhanced the efficiency of active compound
extraction, primarily because a larger solvent volume improves the
dissolution of antioxidant constituents. However, when the ratio
exceeded this optimal point, a decrease in antioxidant capacity was
observed. Consistent with previous outcomes, an increase in solvent
volume promotes compound diffusion only up to an optimal ratio
approximately 1:20 g/mL beyond this excessive dilution a reduced mass
transfer efficiency give rise to diminished antioxidant activity*°.

The optimal ratio of 1:20 g/mL was also observed by Majeed in the
extraction of Origanum vulgare®, by Rezaei et al. in the extraction of
apple pomace®, and by Tourabi et al. in the extraction of Mentha
longifolia®.
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Optimal Conditions for Red Ginger Rhizome Extraction Using the RSM
Method

The optimal extraction condition for red ginger were determined by
varying the temperature, time, and sample-to-solvent ratio®*. The
experimental design based on RSM is presented in Table 4. A total of
twenty experimental runs were done, involving three independent
variables: extraction temperature (63-97 °C), extraction time (23-57
minutes), and sample-to-solvent ratio (1:11-1:28 g/mL). The dependent
variable analyzed in this study was the antioxidant capacity, described
as milligrams of ascorbic acid equivalent per gram of fresh weight (mg
AAE/g FW). Across all treatments, the antioxidant capacity ranged
from 1.9416 to 3.8922 mg AAE/g FW. The lowest extraction yield was
obtained at 63 °C for 40 minutes using a sample-to-solvent ratio of 1:20
g/mL. In contrast, the highest yield was reached at 90 °C for 50 minutes
with a ratio of 1:25 g/mL. To check how accurate and reliable the model
was, an analysis of variance (ANOVA) was carried out using Design-
Expert software version 13.

The model’s suitability was tested using several statistical indicators,
including the F-value, p-value, coefficient of determination (R?),
adjusted R?, and coefficient of variation (CV). Table 5 describes the
proposed regression model for the response variable, which is
antioxidant capacity. In this case, the RSM uses a two-factor interaction
(2F1) regression model to identify and evaluate how the experimental
factors interact with each other. The ANOVA results show that the
predictive model is statistically significant and could explain the data
variation, as indicated by a high F-value and a very low p-value (p <
0.0001). In this case, the main factors—extraction temperature,
extraction time, and sample-to-solvent ratio—have a strong effect on
the extraction of antioxidant compounds, with all p-values below
0.0001. In addition, variables A, B, and C represent temperature,
extraction time, and the sample-to-solvent ratio respectively, showing
their direct effect in the regression model. In addition, substantial
interactions were found between some variables, especially between
temperature and the sample-to-solvent ratio, as well as between
extraction time and the sample-to-solvent ratio (p < 0.05). This means
that certain combinations of these factors strongly affect antioxidant
levels. However, the interaction between temperature and extraction
time was not significant, as shown by p-values greater than 0.05%. This
means that this combination does not affect antioxidant capacity. The
Lack of Fit (LOF) value describes how well the model fits the
experimental data. The LOF p-value is 0.1096 (p > 0.05), which means
it is not significant>.The model is consistent by the experimental data
and can be used to predict ideal extraction situation.

Table 6 describes the model fit statistics for the quadratic regression
model. The coefficient of variation (CV) describes how precise and
consistent the model is, as it measures how much the data vary
compared to the average value. In this case, a CV of 2.66% describes
very little variation, meaning the model accurately represents the
observed changes in antioxidant levels during extraction. The
coefficient of determination (R?) reflects the ratio of data variability that
can be described by the regression model. In this study, the R? value
fulfilled was 0.9811. A value approaching 1 suggests that the linear
regression model provides a strong explanatory fit, describing that
approximately 98.11% of the response variation is accounted for by the
experimental factors tested®. The adjusted coefficient of determination
(adj R?) describes how well the added independent variables improve
the model’s ability to explain the results without making it too complex.
In this study, the adj R2 value of 0.9724 means that about 97.24% of the
changes in the dependent variable can be described by the regression
model, after considering the number of variables used in the analysis®.
Therefore, the RSM method is helpful for finding the best extraction
conditions to increase antioxidant levels in red ginger. Figure 3
describes a 3D response surface plot that explains how two independent
variables relate to one dependent variable in the experiment. The third
independent variable is not shown in the graph; it is kept constant at its
middle value, marked by the red point in the center of the plot. This
graph describes how the factors interact and how their combinations
affect the result. In this case, the figure helps explain how changes in
factors like extraction time, temperature, and sample-to-solvent ratio
together impact the amount of antioxidants. The color patterns on the
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graph show changes in antioxidant levels caused by the interaction
between the two independent variables. Figure 4a describes how
temperature (A) and extraction time (B) relate to each other and affect
antioxidant levels. Both factors seem to increase antioxidant content,
but temperature has a stronger effect, shown by the steeper slope of the
surface plot and the shift toward green colors. Conversely, extraction
time exhibited a relatively smaller impact, as evidenced by the flatter
slope and the predominance of blue tones on the surface plot. Figure 4b
describes how temperature and the sample-to-solvent ratio interact, and
together affect antioxidant levels. In this case, increasing both variables
led to higher reaction activity. However, temperature had a stronger
effect, shown by the steeper curve and the change toward yellow-green
colors. In contrast, the sample-to-solvent ratio displayed a gentler slope
accompanied by a green-to-blue color gradient, describing a mild
impact on the response. Figure 4c illustrates the connection between
extraction time and solvent volume in relation to antioxidant capacity.
Both indicators show an increase in response, though by a relatively
gentle slope. The predominance of green tones on the surface plot
suggests a moderate level of antioxidant activity. Overall, Figure 5
describes the best conditions for the three main variables based on the
RSM analysis. Figure 5a describes the optimal temperature of 90 °C,
Figure 5b describes the best extraction time of 50 minutes, and Figure
4c¢ describes the ideal sample-to-solvent ratio of 1:25 g/mL or solvent
volume of 125 mL. Figure 5d describes the predicted antioxidant level,
which reached 3.87587 mg AAE/g FW, as seen from the upward trend
in the response curve. Under the best extraction conditions found using
the RSM method, the tested antioxidant level was 3.7811 mg AAE/g
FW. The relative standard deviation (RSD) between the predicted and
actual values was 2.44%, which is well below the 5% limit. This small
difference describes that the predicted results match the experimental
data well, proving that the model is accurate and reliable in showing
real observations.5”%8, These results show that the model is quite
accurate in predicting antioxidant levels.

Conclusion

The optimal extraction condition for red ginger Rhizomes were
determined via the OFAT method and the optimal conditions were a
temperature of 80°C, an extraction time of 40 minutes, and a sample-
to-solvent ratio of 1 g per 20 mL. Under these conditions, the
antioxidant capacity was 2.8037 mg AAE/g FW. In contrast,
optimization utilizing the RSM described slightly different conditions,
i.e. an optimal temperature of 90 °C, an extraction time of 50 minutes,
and a sample-to-solvent ratio of 1:25 g/mL. These condition gave the
highest antioxidant capacity, reaching 3.7811 mg AAE/g FW. The
outcomes of this study reaffirm the effectiveness of RSM as a predictive
model in enhancing the extraction efficiency of total antioxidant
capacity of red ginger rhizomes. Furthermore, future research should
emphasize on scaling-up this procedure to assess its feasibility for
industrial applications, as well as the evaluation of antioxidant stability
during storage. Also, a more comprehensive investigation into the
bioactive compositions and biological properties of the extract may
yield valuable insights into its potential utilization in food,
pharmaceutical, and nutraceutical formulations.
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