

Tropical Journal of Natural Product Research

Available online at <https://www.tjnp.org>

Original Research Article

Formulation and Stability Evaluation of Facial Lifting Serums Incorporating *Pelargonium graveolens* for 5-Lox and Hyaluronidase Activity Suppression

Najlae El-Otmani* and Ahmed Zahidi

Therapeutic Chemistry Laboratory, Department of Drug Sciences, Faculty of Medicine, and Pharmacy, Mohammed V University, Rabat 6203, Morocco.

ARTICLE INFO

ABSTRACT

Article history:

Received 06 June 2025

Revised 30 November 2025

Accepted 16 January 2026

Published online 01 February 2026

Plant-based products offer promising avenues in anti-aging skincare. In this study, both *Pelargonium graveolens* flower extracts using different extraction methods, and lifting facial formulations incorporating the hydroethanolic extract were evaluated for their Dermocosmetic potential. The hydroethanolic sonicated extract demonstrated significant hyaluronidase inhibitory activity ($IC_{50} = 17.86 \pm 0.49 \mu\text{g/mL}$) and effectively suppressed 5-lipoxygenase activity ($IC_{50} = 18.65 \pm 0.96 \mu\text{g/mL}$). No statistically significant differences were observed in sun protection factor (SPF) (24.33 - 26.02) values across the extraction methods. Serum formulations enriched with the extract (2%), exhibited enhanced 5-lipoxygenase inhibition ($IC_{50} = 13.9 - 17.5 \mu\text{g/mL}$), and hyaluronidase inhibition ($IC_{50} = 11.76 - 31.66 \mu\text{g/mL}$). All samples showed interfacial tension-lowering capacity. F1 and F2 remained stable over 90 days; F3 showed phase separation. Minimal changes in physicochemical parameters confirming interfacial tension-lowering capacity, and antioxidant effects of the extract, with potential lifting and anti-inflammatory effects.

Keywords: Anti-aging, Formulation, 5-Lipoxygenase, *Pelargonium graveolens*.

Introduction

Extracellular matrix is a central pathway involved in structural and functional deterioration of the epidermis.¹ Among the enzymes involved, hyaluronidase plays a pivotal role by catalysing the hydrolysis of hyaluronic acid, a major glycosaminoglycan responsible for dermal hydration and viscoelasticity. This enzymatic activity leads to a progressive loss of moisture, elasticity, and volume within the dermis.² Notably, increased hyaluronidase expression has been reported in both intrinsic ageing and photoaging, underscoring its relevance as a therapeutic target in strategies aimed at preserving cutaneous integrity.^{3,4} While numerous small-molecule inhibitors have been described,⁵ Recently, the emphasis has increasingly been placed on agents based on plants, which combine biocompatibility with beneficial security profiles.⁶ For such candidates to progress from laboratory discovery to practical application, their performance within finished formulations must be established.⁷ In the Dermocosmetic field, evaluation extends beyond biological activity to encompass physicochemical stability, rheological performance, and the capacity to preserve formulation homogeneity under thermal and mechanical stress.⁸ Such assessments are essential to ensure that plant extracts retain their functional efficacy when incorporated into complex delivery systems such as serums or emulsions.⁸ Stable incorporation at efficacious concentrations is regarded as a prerequisite for industrial adoption, as instability can lead to variable dosing, diminished shelf-life, and compromised consumer acceptance.⁹

In fact, the combined requirements of potent enzymatic inhibition and formulation stability provide the framework for current research efforts, guiding the selection, optimisation and eventual commercial deployment of new natural active ingredients designed to reduce the visible signs of skin aging.

Plants are widely explored for their reservoir of bioactive compounds, including flavonoids, alkaloids, and tannins, which contribute to their therapeutic and economic importance.¹⁰ *Pelargonium graveolens* (*P. graveolens*), a fragrant perennial herb of the Geraniaceae family, has been previously investigated for its pharmacological and biological properties; including anti-inflammatory, antimicrobial, and skin-regenerative effects.¹¹⁻¹³ In the present study, extracts of *P. graveolens* were explored not for their hyaluronidase inhibitory activity, photoprotective capacity and physicochemical behavior in emulsion systems. Notably, to the best of our knowledge, this is the first report to characterize *P. graveolens* extracts in terms of their ability to reduce surface and interfacial tension; key parameters influencing emulsion formation and stability. One extract was subsequently incorporated into facial serums, and the physical stability was monitored over a 90-day period under accelerated conditions.

Materials and Methods

Plant Collection and Identification:

Plant material and extraction

The flowers of *P. graveolens* were harvested in May 2022 from Sahel Boutahe (Taounate, Fes-Meknes region, Morocco; 34°29'52.067" N, 4°48'17.397" W). The species was authenticated by Professor Hamid Khamar from the Department of Botany and Plant Ecology at the Scientific Institute, Mohamed V University of Rabat. A voucher specimen (RAB114770) was deposited in the herbarium of the same institute. The collected flowers were air-dried for two weeks, the dried flowers were crushed with an electric grinder (Fritsch, Industriestrasse 8 55743 Idar-Oberstein Germany.) until a fine powder was obtained (diameter $\leq 300 \mu\text{m}$). for subsequent analyses.

Extraction of Plant materials:

Three extraction methods were then used to obtain the phytochemical compounds from the plant material: maceration (w/v: 10 g/100 mL), sonication (w/v: 10 g/100 mL) and infusion (w/v: 2.5 g/75 mL). The solvent used for maceration and sonication was ethanol (100%) and

*Corresponding author. Email: najlae.elotmani@um5r.ac.ma

Tel: +41-783406185

Citation: Najlae El-Otmani, Ahmed Zahidi. Formulation and stability evaluation of facial lifting serums incorporating *Pelargonium graveolens* for 5-LOX and hyaluronidase activity suppression. *Trop J Nat Prod Res*. 2026; 10(1): 6555 – 6561 <https://doi.org/10.26538/tjnp.v10i1.18>

Official Journal of Natural Product Research Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria

ethanol-water (70:30), while water (100%) was used for infusion. Following extraction, the liquid extracts were filtered and were then concentrated under reduced pressure using a rotary evaporator (Rotavapor R-300, Büchi Labortechnik AG, Switzerland). The remaining aqueous portions were subsequently frozen and lyophilized with a freeze-dryer (FreeZone 2.5 L, Labconco, USA).

Facial lifting serums formulation:

For each of the three formulations (F1, F2, and F3), the aqueous phase was prepared by combining distilled water, glycerine, and propylene glycol in a 1 L glass beaker under continuous stirring. Once homogenised, the emulsifier was gradually incorporated, followed by the sequential addition of all remaining components as detailed in Table 1. Each mixture was then homogenized with a mechanical stirrer (Philips GmbH HR2535/00 650W, Hamburg, Germany). The solutions were agitated until a uniform white aqueous mixture was obtained (approx. 3 minutes), cooled and collected in glass jars. The formulas were also pH-adjusted with triethanolamine. Xanthan gum, tragacanth gum or *Linum usitatissimum* seed extract was used to provide a thicker consistency.

Table 1: Liquid serum formulas composition

F1 (INCI)	%, w/w	F2 (INCI)	%, w/w	F3 (INCI)	%, w/w
Aqua	Q.S	AQUA	Q.S	AQUA	Q.S
Xhantan gum	0.2	Tragacan th Gum	0.2	<i>Linum usitatissimum</i> seed extract	0.2
Sodium Benzoate	0.3	Sodium Benzoate	0.3	Sodium Benzoate	0.3
Glycerin	7	Glycerin	7	Glycerin	7
Propylene glycol	4	Propylen e glycol	4	Propylene glycol	4
Myritol	10	Myritol	6,5	Myritol	0.2
Polysorbat e 80	0.5	Polysorb ate 80	0.5	Carboxymethy cellulose	0.5
Triethanol amine (50%)	-	Triethano lamine (50%)	-	Triethanolami ne (50%)	-
<i>P.graveole</i> ns extract	2	<i>P.graveol</i> ens extract	2	<i>P. graveolens</i> extract	2

Q. s: Quantum Satis, Values are expressed as mean \pm standard error (n = 3). Distinct superscript letters within the same column denote statistically significant differences ($p < 0.05$). Ingredients were obtained from BASF Beauty Care Solutions, Lyon, France.

Stability

pH, conductivity, water activity, and lipid oxidation stability were evaluated at various intervals post-production (1, 15, 30, 60, and 90 days) to detect any changes over time. pH and conductivity were measured directly from the samples using a pH and conductivity meter (BOECO Bench-CT-676, Germany). Water activity was assessed by measuring the weight difference of initial and dried sample at 100°C for 48 hours. Lipid oxidation was evaluated using (CDR FoodLab® Junior, Perugia, Italy) and results were expressed quantitatively as meqO2/Kg. Physical stability was examined through centrifugation (Sigma 2-16P, Osterode am Harz, Germany) at 3000 rpm for 30 minutes, simulating accelerated conditions, and subjected to six temperature cycles between 4 °C and 40 °C, with each cycle consisting of 24 h at each temperature. Changes in visual appearance, including color and odor, were assessed and compared between the freshly prepared formulations.

Interfacial and surface tension characteristics

Interfacial and surface tension were measured by the pendant drop method using a fully automatic tensiometer (DataPhysics Instruments GmbH - Filderstadt, Germany). Briefly, the extract (1%, w/w) was

placed in glass syringe and injected through a 22-gauge stainless steel needle into air (surface tension), or soybean oil placed inside a glass cell (interfacial tension). The drop of extract solution was incubated for approximately 10 min inside the continuous phase, during which a high-resolution camera captured its dimensions to measure the interfacial or surface tension using the Young-Laplace equation and calculated automatically by dpiMAX software.

Hyaluronidase inhibition assay

The inhibitory activity against hyaluronidase was evaluated using a previously described method¹⁴ with some modifications. Briefly, the reaction mixture contains 25 μ L CaCl₂ (12.5 mM), 12.5 μ L of *P. graveolens* extracts or the facial lifting serums containing the hydroethanolic sonicated extract, 12.5 μ L hyaluronidase enzyme (1.5 mg/mL in 0.1 M acetate buffer, pH = 3.5, Thermo Fisher Scientific, Waltham, USA), and 100 μ L hyaluronic acid (1 mg/mL in 0.1 M acetate buffer, pH 3.5, Carbosynth Ltd, Compton, UK). Following incubation, the mixtures were heated in a water bath at 100°C for 3 minutes, then cooled at room temperature. A volume of 25 μ L potassium tetraborate (0.8 M) was added, followed by 800 μ L 4-(dimethylamino)benzaldehyde. Once the 20-minute incubation period had elapsed, the absorbance was recorded at 600 nm (FLUOstar® Omega BMG Labtech, USA). Inhibition percentage was calculated using the equation (1). Results are presented as mean \pm SEM of IC₅₀ (μ g/mL) values. Retinol was tested as a positive control.

$$I\% = \frac{(A_c - A_{Bc}) - (A_s - A_{Bs})}{(A_c - A_{Bc})} \times 100 \quad (1)$$

A_c : Hyaluronic acid, hyaluronidase and acetate buffer.

A_{Bc} : Includes Hyaluronic acid and acetate buffer.

A_s : Extract, Hyaluronic acid and tyrosinase.

A_{Bs} : Extract and Hyaluronic acid.

5-Lox inhibition assay

The *P. graveolens* extracts and the formulated products were evaluated for their inhibitory activity against 5-LOX following the established protocol developed by Wisstra and collaborators.¹⁵ The reaction mixture was composed of 4 μ L of *P. graveolens* extracts or facial lifting serum containing the hydroethanolic sonicated extract, 4 μ L of 5-LOX from *Glycine max* (100 U/mL, Cayman Chemical, Ann Arbor, USA), and 40 μ L of phosphate buffer (0.1 M, pH = 9.0). After pre-incubation at room temperature for 5 minutes, 4 μ L of linolenic acid (4.18 mM in ethanol, Sigma-Aldrich, St. Louis, USA) was added. The formation of conjugated dienes was monitored by measuring absorbance at 234 nm (FLUOstar® Omega (BMG Labtech, USA)). Results were expressed as IC₅₀ values (μ g/mL) and reported as mean \pm SEM from three independent experiments (n = 3). Quercetin was used as the positive control.

UV-B absorption: photoprotective effect

P. graveolens extracts were investigated for their protective activity against UV-B rays according to Mansur's method.¹⁶ The extracts absorbance (2 mg/mL) was measured at a range of wavelengths between 290 and 320 nm, with 5 nm intervals and a UV-VIS spectrometer (ROHS Uv-1800pc, Macy, China) was used. The Sun Protection Factor (SPF) was then calculated by applying the equation (2), where EE x I values are constants as set by Sayre et al.¹⁷ Zinc oxide was used as the positive control.

$$SPF = CF \times \sum_{290}^{320} EE(\lambda) \times I(\lambda) \times Abs(\lambda) \quad (2)$$

Where:

EE: Erythemogenic effect.

I: The radiation intensity.

Abs: Absorbance of extract.

CF: Correction factor.

Data analysis

Experiments were carried out in triplicate ($n = 3$). Analysis of data was performed using Microsoft Excel, with results presented as mean \pm standard deviation (SD). An ANOVA test followed by a Tukey's multiple comparisons test were undertaken using OriginPro 2024 (OriginLab Corporation, Massachusetts, USA). Different results were considered significantly different at $p < 0.05$.

Results and Discussion**Inhibition of 5-Lipoxygenase (5-LOX)**

Inflammatory skin conditions are in many cases triggered by external stimuli such as UVB exposure, which induce oxidative stress and subsequent inflammatory processes. Cutaneous inflammation is a key factor in skin ageing, inducing loss of elasticity and irregular skin tone.¹⁸ Therefore, reducing skin inflammation represents a promising strategy to prevent or reduce age-related skin damage. Increasingly, research and industry are turning their attention to natural anti-inflammatory agents. Integrating natural ingredients in cosmetic formulations offers significant added value by effectively reducing inflammation and improving skin texture, thereby achieving a therapeutic effect that is also cosmetically beneficial.¹⁹ In this study, both the crude extracts and the formulations based on the extract were tested for their potential to suppress 5-LOX enzyme, the key one involved in fatty acid oxidation and in the biosynthesis of leukotrienes, major mediators of inflammation. Thereby various extraction techniques and solvents were used to assess their influence on bioactivity (Table 2).

Table 2: SPF and IC_{50} ($\mu\text{g}/\text{mL}$) values against 5-LOX and Hyaluronidase enzymes.

Extract/ Formula	SPF	5-LOX	Hyaluronidase
Sonication EtOH- H ₂ O	26.02 0.020 ^b	\pm 20.86 \pm 1.66 d, e	31.46 \pm 1.36 ^b
Sonication EtOH	24.33 0.15 ^b	\pm 18.65 \pm 0.96 d, e	17.86 \pm 0.49 ^d
Maceration EtOH-H ₂ O	24.78 0.127 ^b	\pm 17.5 \pm 1.80 e, f	22.03 \pm 0.87 ^c
Maceration EtOH	25.49 0.016 ^b	\pm 62.16 \pm 2.46 b	32.13 \pm 0.15 ^b
Infusion H ₂ O	25.56 0.059 ^b	\pm 82.23 \pm 1.15 a	43.23 \pm 1.59 ^a
F1	n.d	17.50 ± 1.13 e, f	11.76 \pm 0.68 ^{e, f}
F2	n.d	13.9 ± 1.82 ^c	14.26 \pm 0.20 ^b
F3	n.d	30.73 ± 2.28 f	31.66 \pm 1.52 ^e
Standards	11.88 2.08 ^{1, a}	\pm 22.83 \pm 0.66 2, d	10.7 \pm 0.65 ^{3, f}

1: Zinc oxyde, 2: Quercitin, 3: Retinol, n.d: not defined. Values are expressed as mean \pm standard error ($n = 3$). Distinct superscript letters within the same column denote statistically significant differences ($p < 0.05$).

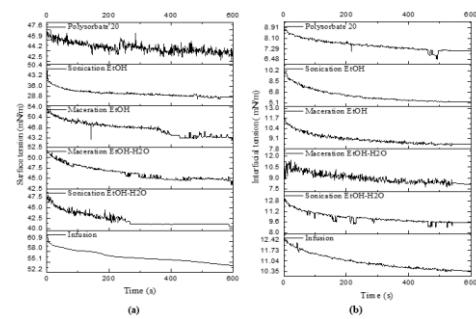
The IC_{50} values for 5-LOX inhibition varied markedly across the tested samples, ranging from $13.9 \pm 1.82 \mu\text{g}/\text{mL}$ for F2 to $82.23 \pm 1.15 \mu\text{g}/\text{mL}$ for the aqueous infusion. F2 exhibited the most potent inhibitory effect, significantly surpassing the standard reference ($22.83 \pm 0.66 \mu\text{g}/\text{mL}$) ($p < 0.05$). Comparable activity was observed for Formula 1 and the hydroalcoholic macerate (17.50 ± 1.13 and $17.5 \pm 1.80 \mu\text{g}/\text{mL}$, respectively) ($p < 0.05$), while sonicated ethanolic and hydroalcoholic extracts showed moderate inhibition (18.65 ± 0.96 and $20.86 \pm 1.66 \mu\text{g}/\text{mL}$, respectively). In contrast, both the ethanolic macerate and aqueous infusion displayed considerably weaker activity, with higher IC_{50} values of 62.16 ± 2.46 and $82.23 \pm 1.15 \mu\text{g}/\text{mL}$,

respectively ($p < 0.05$).

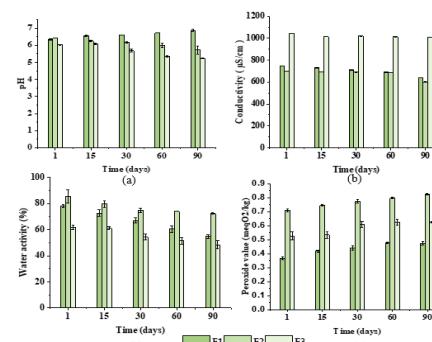
The inhibitory effects of *P. graveolens* flower extracts on 5-LOX are likely explained by their high phenolic compound content, as previously demonstrated in our phytochemical study.¹¹ Among the major compounds previously identified are quercetin, kaempferol, myricetin, catechin and epigallocatechin, as well as their glycosidic derivatives. Significant levels of phenolic acids, including gallic, caffeic, ferulic and rosmarinic acids have also been identified.²⁰ It was demonstrated that quercetin inhibited LOX-dependent oxygenation of linoleic acid in a concentration and time dependent manner, with 50% inhibition observed at $3 \mu\text{M}$ and complete suppression above $100 \mu\text{M}$. Kinetic studies revealed a non-competitive inhibition, attributed to the reduction of peroxidation intermediates such as linoleic acid radicals. Quercetin oxidation, confirmed by a decrease in absorbance at 380 nm and an increase at 335 nm, was dependent on substrate concentration, with a Michaelis constant (K_m) of approximately $5 \mu\text{M}$. While ascorbate at 0.1 mM had no direct effect on LOX-mediated oxygen uptake, it markedly inhibited quercetin oxidation by reducing its oxidised forms, without acting through superoxide scavenging or enzyme inhibition.²¹ Other flavonoids, notably cirsiliol ($3',4',5\text{-trihydroxy-6,7\text{-dimethoxyflavone}$), demonstrated to exhibit strong inhibition of 5-LOX. Cirsiliol inhibited 5-LOX by 97% at $10 \mu\text{M}$ ($IC_{50} = 0.1 \mu\text{M}$) and significantly reduced the release of anaphylactic mediators in sensitized guinea pig lung tissue, while showing minimal effect on cyclooxygenase activity.²¹ In another study, Among the flavonoids tested, sophoraflavanone G was the most potent dual inhibitor of COX-1 ($IC_{50} = 1.9 \mu\text{M}$) and 5-LOX ($IC_{50} = 2.2 \mu\text{M}$), comparable to indomethacin and NDGA. Kurardin and kurarinone selectively inhibited COX-1 and 5-LOX. Papyriflavonol A and kenusanone A were selective for 5- and 12-LOX, while morusin, kuwanon C, and sanggenon D showed broader but weaker inhibition. However, quercetin was moderately active.²² Gavzan et al. developed a nanoemulsion of *P. graveolens* essential oil using Tween 80, producing spherical droplets (553 nm, PDI 0.113). At doses of 50-100 mg/kg, this formulation significantly attenuated formalin-induced nociceptive behaviours, reduced writhing responses, and increased latency in the hot plate test; these effects were reversed by opioid antagonists. Unlike *P. graveolens* oil alone (10 mg/kg), the nanoemulsion (100 mg/kg) also significantly decreased paw oedema.²³ In our previous study, topical application of 4% *P. graveolens* flower essential oil gels in mouse models demonstrated strong, dose-dependent anti-inflammatory effects, with oedema inhibition reaching 56.39% at 4 hours and 80.78% at 6 hours. This efficacy is likely attributed to esters and sesquiterpenes enhancing skin penetration, alongside key constituents such as β -citronellol and geraniol modulating inflammatory mediators including nitric oxide, prostaglandin E₂, and cyclooxygenase.¹²

Hyaluronidase activity suppression

Systemic skin aging is a multifactorial process influenced by intrinsic factors such as metabolic, cellular and hormonal changes, as well as extrinsic factors such as prolonged exposure to environmental pollutants, harmful chemicals and ionizing radiation, which progressively alter the structure and function of the skin.²⁴ In this context, our study assessed the dermoprotective potential of *P. graveolens* flowers in facial cosmetic serum formulations by examining their inhibitory activity against hyaluronidase. Hyaluronidase plays a critical role in the degradation of hyaluronic acid in connective tissues; thus, its inhibition is associated with the preservation of skin integrity and reduced tissue damage.²⁵ The findings in Table 2 demonstrated IC_{50} values ranged from $10.7 \pm 0.65 \mu\text{g}/\text{mL}$ (standard) to $43.23 \pm 1.59 \mu\text{g}/\text{mL}$ (infusion H₂O). The most potent formula was F1 ($11.76 \pm 0.68 \mu\text{g}/\text{mL}$), showing comparable inhibition to the standard and suggesting strong anti-hyaluronidase activity. F2 followed closely with an IC_{50} of $14.26 \pm 0.20 \mu\text{g}/\text{mL}$, whereas Formula 3 exhibited weaker activity ($31.66 \pm 1.52 \mu\text{g}/\text{mL}$), aligning with the range observed for macerated or sonicated ethanolic extracts. Sonication in EtOH-H₂O ($31.46 \pm 1.36 \mu\text{g}/\text{mL}$) and maceration in EtOH ($32.13 \pm 0.15 \mu\text{g}/\text{mL}$) produced moderate inhibition, while infusion (H₂O) again showed the lowest activity ($43.23 \pm 1.59 \mu\text{g}/\text{mL}$). In addition, F1 ($IC_{50} = 11.76 \pm 0.68 \mu\text{g}/\text{mL}$) shows promising potential for the management of skin aging and inflammation. Combined with its confirmed photoprotective properties


and stability during storage, these results suggest that the formula can effectively serve as a facial lifting serum, offering protection against sunburn and inflammation while simultaneously providing benefits in delaying the ageing process of the skin. In line with this, recently El Wafa et al²⁶ reported that polyphenolic extracts from *P. graveolens* significantly attenuated hyaluronidase activity ($IC_{50} = 15.75 \pm 0.8 \mu\text{g/mL}$), reinforcing the current findings. Plant metabolites, particularly polyphenols, are diverse secondary compounds characterized by multiple hydroxyl groups that confer antioxidant and various biological activities, including antitumor, antiviral, and anti-inflammatory effects.²⁷ Several studies suggested that certain flavonoids effectively inhibit hyaluronidase enzymes involved in extracellular matrix metabolism. This inhibition is structure-dependent: the presence of a C2-C3 double bond, specific hydroxyl groups, and the absence of glycosylation enhance inhibitory potency, while glycoside conjugation generally reduces it. Additionally, low-molecular-weight compound aggregation via acidic groups may contribute to hyaluronidase inhibition, though further research is required.⁶ Bralley and his group investigated the effects of various phenolic acids, flavonoids, and condensed tannins from *Sorghum bicolor* on hyaluronidase activity. However, only condensed tannin, apigenin, luteolin, and kaempferol showed significant inhibition. It is likely that condensed tannins inhibit hyaluronidase both by enzyme denaturation and through interactions with its hydrophobic channel.²⁸

Photoprotective activity


The Sun Protection Factor (SPF), also referred to as the Protection Index (PI), quantifies a product's capacity to shield the skin from UV radiation.²⁹ Ingredients with high SPF are indispensable in cosmetic and pharmaceutical preparation of anti-pigmentation and lightening products.³⁰ *P. graveolens* extracts have been evaluated for their effect in providing medium to high levels of absorption. Among these, the extract obtained by hydroethanolic sonication, and the extract obtained by infusion exhibited the highest protective effects (26.02 ± 0.02 and 25.56 ± 0.059 , respectively), while the extracts obtained by hydroethanolic maceration, hydroethanolic or ethanolic sonication provided close values (24.78 ± 0.127 , 24.00 ± 4.39 and 24.33 ± 0.15 , respectively) (Table 2). All extracts scored higher SPF than the positive control, zinc oxide (11.88 ± 2.088) ($p < 0.05$). A correlation between UVB exposure and collagen expression has been established in previous reports,³¹ indicating that prolonged exposure to UVB could lead to collagen degradation, and therefore contribute to skin aging. Polyphenols are extensively proved as natural photoprotective agents, thereby mitigating UV-induced skin damage.^{32, 33}

Interfacial and surface tension characteristics

The reduction of surface or interfacial tension plays a key role in preventing droplet coalescence and phase separation in a formulation.^{34, 35} However, the surface-active properties of *P. graveolens* flower extracts have not been previously reported. Their dynamic surface tension and interfacial tension were assessed, and are shown in Figure 1. The surface tension and interfacial tension of air-water and soybean oil-water interfaces were between 72 and 25 mN/m at time 0s and reduced to 70 and 19 mN/m at the end of the measurement. As shown in Figure 2, all extracts showed valuable activity in reducing interfacial tension and surface tension. For instance, sonication extracts, reduced the surface tension to approximately 48 mN/m at time 0s and 42 mN/m after 600s. In addition, extracts obtained by maceration and ethanolic sonication reduced the interfacial tension to approximately 11 mN/m at time 0s and 8 mN/m after 600s. Infusion extract showed a lower reduction of interfacial tension and surface tension, possibly due to the milder conditions of the infusion process, which may not enhance the release of surface-active active compounds. The standard polysorbate 20, which is often used as emulsifier in dermocosmetic formulations, lowered the interfacial and surface tension to 6.93 mN/m and 43.22 mN/m, respectively. Thereby, this finding indicates that *P. graveolens* flower extracts could be used as natural co-emulsifier in emulsions.

Figure 1: Over time, variations in interfacial tension (a) and surface tension (b) of *P. graveolens* flower extracts.

Figure 2: Facial serums chemical stability, over three months: (a) pH values, (b) conductivity, (c) water activity, and (d) peroxide values.

Emulsifiers are used to create stable emulsions with uniform droplet sizes. Their quality depends on several factors, including their ability to reduce interfacial tension, their adsorption rate at the oil-water interface, and their ability to generate sufficient repulsive forces during homogenization.³⁶ Due to their amphiphilic nature and relatively low molecular weight, saponins can rapidly adsorb to the surface of oil droplets formed during emulsification.³⁷ The carboxylic acid groups therefore promote the formation of a negatively charged interface around the droplets, which prevents coalescence and improves the stability of the emulsion.³⁸ It has been demonstrated that the total saponin content is significantly influenced by the solvent system. The hydroethanolic extract was found to have the highest saponin content. Previous reports demonstrated that hydroethanolic solvent improved the extraction of polar saponins.³⁹

Stability evaluation

Following the formulation of facial lifting serums (F1, F2, and F3), their stability was evaluated over a period of three months. Accelerated stability tests were performed to assess the formulations under extreme stress conditions. Upon centrifugation, formulations F1 and F2 retained their homogeneity, with no evidence of phase separation, suggesting a robust physical stability under mechanical stress. In contrast, formulation F3 underwent visible phase separation, which may be attributed to the absence of an effective co-stabilizer. The interfacial activity of *P. graveolens* extract alone may have been insufficient to maintain emulsion integrity in this formulation.

Upon thermal stress testing, F1 and F2 maintained consistent organoleptic properties, with no alterations in colour, texture, and homogeneity, further confirming their resistance to temperature-induced instability. In the case of F3, a noticeable browning was observed following thermal cycling, accompanied by a visually more fluid consistency, indicating compromised physical integrity under thermal stress conditions. The formulation F3 primarily composed of carboxymethyl cellulose and *Linum usitatissimum* seed extract as thickening and structuring agents, exhibited notable physical instability over time. The lack of strong emulsifying agents in this formula, likely resulted in insufficient surface coverage of oil droplets, weakening

colloidal interactions and favouring coalescence.⁴⁰ Furthermore, exceeding the critical micelle concentration with an appropriate surfactant could potentially improve the integrity of the formulation by promoting finer droplet size distribution and suppressing gravitational separation phenomena.⁴¹ Therefore, optimization of both the type and concentration of emulsifiers remains critical for achieving durable emulsion stability, particularly in formulations involving complex plant-based matrices.⁴¹

The serums chemical stability; in terms of water activity, conductivity, peroxide value and pH variations over a 90-day period are shown in Figure 2. Overall, fluctuations in the water activity, pH and conductivity of the samples remained minimal over the tested period. For instance, F1 exhibited conductivity values ranging from $747.60 \pm 1.53 \mu\text{S}/\text{cm}$ at the time of preparation to $640.3 \pm 1.53 \mu\text{S}/\text{cm}$ after 90 days. F2 started at $700.50 \pm 601.50 \mu\text{S}/\text{cm}$ and decreased to $601.56 \pm 1.25 \mu\text{S}/\text{cm}$ after 90 days. Similarly, F3 initially registered a conductivity of $1044.00 \pm 1.00 \mu\text{S}/\text{cm}$, showing a slight decrease to $1009.00 \pm 1.15 \mu\text{S}/\text{cm}$ after 90 days. These values showed significantly minimal variation over time ($p < 0.05$). A correlation between conductivity and stability was previously demonstrated.⁴²

The analysis of peroxide value shown in Figure 2 (d), revealed consistently low peroxide values across all formulations. After 90 days, the highest value ($p < 0.05$) was observed in F2 ($0.82 \pm 0.01 \text{ mEq/kg}$), followed by F3 ($0.62 \pm 0.01 \text{ mEq/kg}$) and F1 ($0.50 \pm 0.01 \text{ mEq/kg}$). However, there were statistically no significant variations observed from preparation through 15, 30, 60, and 90 days ($p > 0.05$). The minimal peroxide values may be attributed to the aqueous composition devoid of significant fatty acids. However, the addition of extracts exhibiting lipid peroxidation inhibitory activity may be beneficial in improving the shelf-life and oxidative stability of the formulas.⁴³ In fact, the physicochemical environment surrounding emulsion droplets has been shown to play a critical role in determining the long-term stability of the system.⁴⁴ Parameters such as pH, ionic strength, temperature, and the rheological characteristics of the continuous phase have been identified as major factors influencing interfacial behaviour and droplet interaction dynamics.⁴⁵ This influence is particularly pronounced in emulsions stabilized by ionic surfactants, where electrostatic repulsion serves as the primary stabilizing mechanism.⁴⁶ Alterations in pH or ionic composition have been observed to significantly affect the surface charge density of dispersed droplets by modulating the adsorption patterns of charged species at the interface.⁴⁷ For instance, carboxylate groups confer negative charges under physiological pH conditions, whereas cationic polymers, bearing protonated amine groups, tend to introduce positive surface charges in mildly acidic environments.⁴⁸

Conclusion

The present findings underscore the strong potential of *P. graveolens* extracts as effective bioactive agents for Dermocosmetic applications. The hydroethanolic extract demonstrated notable inhibitory activity against both hyaluronidase and 5-LOX. These results lay a solid foundation for the development of stable, plant-derived topical formulations with lifting and anti-inflammatory benefits. However, to ensure the effective translation of formulas F1 and F2 into clinical use, comprehensive safety assessments, including dermatological tolerance studies, are essential in future development stages.

Conflict of Interest

The authors declare no conflict of interest.

Authors' Declaration

The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

References

1. Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. *Cell Death Dis.* 2024;15(6):443. Doi: 10.1038/s41419-024-06818-z.
2. Chylińska N, Maciejczyk M. Hyaluronic Acid and Skin: Its Role in Aging and Wound-Healing Processes. *Gels.* 2025;11(4):281. Doi: 10.3390/gels11040281
3. Ren Q, Qu L, Yuan Y, Wang F. Natural Modulators of Key Signaling Pathways in Skin Inflammation. *Clin Cosmet Investig Dermatol.* 2024;2967-2988. Doi: 10.2147/CCID.S502252
4. Fronza M, Caetano GF, Leite MN, Bitencourt CS, Paula-Silva FW, Andrade TA, Frade MA, Merfort I, Faccioli LH. Hyaluronidase modulates inflammatory response and accelerates the cutaneous wound healing. *PLoS One.* 2014;9(11):112297. Doi: 10.1371/journal.pone.0112297.
5. Thoyajakshi RS, Megha GT, Ravi Kumar H, Mathad SN, Khan A, Nagaraju S, Mahmoud MH, Ansari A. Garcinol: A novel and potent inhibitor of hyaluronidase enzyme. *Int J Biol Macromol.* 2024;266(2):131145. Doi: 10.1016/j.ijbiomac.2024.131145
6. Gębalski J, Graczyk F, Załuski D. Paving the way towards effective plant-based inhibitors of hyaluronidase and tyrosinase: A critical review on a structure-activity relationship. *J Enzyme Inhib Med Chem.* 2022;37(1):1120-1195. Doi: 10.1080/14756366.2022.2061966.
7. Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. *Molecules.* 2022;27(2):349. Doi: 10.3390/molecules27020349.
8. Nhani GBB, Di Filippo LD, de Paula GA, Mantovanelli VR, da Fonseca PP, Tashiro FM, Monteiro DC, Fonseca-Santos B, Duarte JL, Chorilli M. High-tech sustainable beauty: Exploring nanotechnology for the development of cosmetics using plant and animal by-products. *Cosmetics.* 2024;11(4):112. Doi: <https://doi.org/10.3390/cosmetics11040112>
9. El-Otmani N, Zeouk I, Hammani O, Zahidi A. Analysis and Quality Control of Bio-actives and Herbal Cosmetics: The Case of Traditional Cooperatives from Fes-Meknes Region. *Trop J Nat Prod Res.* 2024;8(5). Doi: <https://doi.org/10.26538/tjnpv8i5.20>
10. Saini R, Sharma N, Oladeji OS, Sourirajan A, Dev K, Zengin G, El-Shazly M, Kumar V. Traditional uses, bioactive composition, pharmacology, and toxicology of *Phyllanthus emblica* fruits: A comprehensive review. *J Ethnopharmacol.* 2022;10(282):114570. Doi: 10.1016/j.jep.2021
11. El-Otmani N, Zeouk I, Ben-saghroune H, Zahidi A. Evaluation of the content of polyphenols, flavonoids, tannins, antioxidant capacity and antibacterial activity of *Pelargonium graveolens* flower extracts. *Plant Sci Today.* 2025; 12(1). Doi: <https://doi.org/10.14719/pst.3975>
12. El-Otmani N, El ouazzani F, Akoh R, Ouazzani R, Zeouk I, Loukili A, Boustia D, Zahidi A. Assessment of *Pelargonium graveolens* flower essential oil: Antimicrobial, antioxidant, enzyme inhibition and in vivo topical analgesic and anti-inflammatory efficacy as treatment for atopic dermatitis. *F1000Research.* [version 1; peer review: awaiting peer review]. 2024;13:1366. Doi: <https://doi.org/10.12688/f1000research.158251.1>
13. Kasdi M, Lakabi L, Medjdoub-Bensaad F, Akdader S. Chemical Characterization and Effects of Oral Administration of *Pelargonium graveolens* Essential Oil on Testicular Histomorphometry of White Rabbits. *Trop J Nat Prod Res.* 2024;8(11). Doi: <https://doi.org/10.26538/tjnpv8i11.6>
14. Takahashi T, Ikegami-Kawai M, Okuda R, Suzuki K. A fluorimetric Morgan-Elson assay method for hyaluronidase activity. *Anal Biochem.* 2003;322(2):257-263. Doi: 10.1016/j.ab.2003.08.005.
15. Wisastra R, Kok PA, Eleftheriadis N, Baumgartner MP, Camacho CJ, Haisma HJ, Dekker FJ. Discovery of a novel activator of 5-lipoxygenase from an anacardic acid derived

compound collection. *Bioorg Med Chem.* 2013;21(24):7763-7778. Doi: 10.1016/j.bmc.2013.10.015.

16. Mansur JdS, Breder MNR, Mansur MCdA, Azulay RD. [Determination of sun protection factor by spectrophotometry Determinação do fator de proteção solar por espectrofotometria]. *An Bras Dermatol.* 1986;121-124. Doi: 10.1590/S1516-93322004000300014.

17. Sayre RM, Agin PP, LeVee GJ, Marlowe E. A comparison of in vivo and in vitro testing of sun screening formulas. *Photochem Photobiol.* 1979;29(3):559-66. Doi: 10.1111/j.1751-1097.1979.tb07090.x.

18. Hussein RS, Bin Dayel S, Abahussein O, El-Sherbiny AA. Influences on skin and intrinsic aging: biological, environmental, and therapeutic insights. *J Cosmet Dermatol.* 2025;24(2):16688. Doi: 10.1111/jocd.16688.

19. Choi HY, Lee YJ, Kim CM, Lee Y-M. Revolutionizing cosmetic ingredients: harnessing the power of antioxidants, probiotics, plant extracts, and peptides in personal and skin care products. *Cosmetics.* 2024;11(5):157. Doi: <https://doi.org/10.3390/cosmetics11050157>

20. Amel HA, Kamel H, Meriem F, Abdelkader K. Traditional Uses, Botany, Phytochemistry, and Pharmacology of *Pelargonium graveolens*: A Comprehensive Review. *Trop J Nat Prod Res.* 2022;6(10). Doi: 10.26538/tjnpr/v6i10.2

21. Yoshimoto T, Furukawa M, Yamamoto S, Horie T, Watanabe-Kohno S. Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase. *Biochem Biophys Res Commun.* 1983;116(2):612-618. Doi: 10.1016/0006-291X(83)90568-5.

22. Chi YS, Jong HG, Son KH, Chang HW, Kang SS, Kim HP. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: cyclooxygenases and lipoxygenases. *Biochem Pharmacol.* 2001;62(9):1185-1191. Doi: 10.1016/s0006-2952(01)00773-0.

23. Gavzani H, Azimi R, Mashayekhpour MA, Tabari MA, Shayestehmehr R. The anti-nociceptive and anti-inflammatory effects of *Pelargonium graveolens* essential oil nanoemulsion in mice. *Sci Rep.* 2025;15(1):1-12. Doi: <https://doi.org/10.1038/s41598-025-00722-y>

24. Eassa HA, Eltokhy MA, Fayyaz HA, Khalifa MK, Shawky S, Helal NA, Eassa HA, Youssef SF, Latz IK, Nounou MI. Current topical strategies for skin-aging and inflammaging treatment: science versus fiction. *J Cosmet Sci.* 2020;71(5).

25. Salih ARC, Farooqi HMU, Amin H, Karn PR, Meghani N, Nagendran S. Hyaluronic acid: Comprehensive review of a multifunctional biopolymer. *Futur J Pharm Sci.* 2024;10(1):63. Doi: <https://doi.org/10.1186/s43094-024-00636-y>

26. El Wafa SSA, Kassem HAH, Ramadan NM, Eltawee MM, Younis NA, Younis IY. Phytochemical profiling of *Pelargonium graveolens* l'Hé and evaluation of its activity against D-galactose induced skin ageing. *Nat Prod Res.* 2025;1-13. Doi: 10.1080/14786419.2025.2487148.

27. Quideau S, Deffieux D, Douat-Casassus C, Pouységú L. Plant polyphenols: chemical properties, biological activities, and synthesis. *Angew Chem Int Ed Engl.* 2011;50(3):586-621. Doi: 10.1002/anie.201000044

28. Bralley E, Greenspan P, Hargrove JL, Hartle DK. Inhibition of hyaluronidase activity by select sorghum brans. *J Med Food.* 2008;11(2):307-12. Doi: 10.1089/jmf.2007.547

29. He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). *Biomed Pharmacother.* 2020;134:111161. Doi: 10.1016/j.bioph.2020.111161.

30. Ahmed IA, Mikail MA, Zamakshshari N, Abdullah AH. Natural anti-aging skincare: role and potential. *Biogerontology.* 2020;21(3):293-310. Doi: 10.1007/s10522-020-09865-z

31. Threskeia A, Sandhika W, Rahayu RP. Effect of turmeric (*Curcuma longa*) extract administration on tumor necrosis factor-alpha and type 1 collagen expression in UVB-light radiated BALB/c mice. *J Appl Pharm Sci.* 2023;13(5):121-125. Doi: 10.7324/JAPS.2023.19358

32. Bharadvaja N, Gautam S, Singh H. Natural polyphenols: a promising bioactive compounds for skin care and cosmetics. *Mol Biol Rep.* 2023;50(2):1817-1828. Doi: 10.1007/s11033-022-08156-9.

33. Rajasekar M, Mary J, Sivakumar M, Selvam M. Recent developments in sunscreens based on chromophore compounds and nanoparticles. *RSC advances.* 2024;14(4):2529-2563. Doi: <https://doi.org/10.1039/D3RA08178H>

34. Taarji N, Bouhoute M, Chafai Y, Hafidi A, Kobayashi I, Neves MA, Tominaga K, Isoda H, Nakajima M. Emulsifying performance of crude surface-active extracts from liquorice root (*Glycyrrhiza glabra*). *ACS Food Sci Technol.* 2021;1(8):1472-1480. Doi: 10.1021/acsfoodsctech.1c00208

35. Amine C, Dreher J, Helgason T, Tadros T. Investigation of emulsifying properties and emulsion stability of plant and milk proteins using interfacial tension and interfacial elasticity. *Food Hydrocoll.* 2014;39:180-186. Doi: 10.1016/j.foodhyd.2014.01.001

36. Tiang SSL, Low LE, Ali I, Zhou L, Goh B-H, Gew LT, Tang SY. Recent advances in ultrasonic cavitation technologies for emulsion preparation: A mini review. *Curr Opin Chem Eng.* 2024;45:101046. Doi: 10.1016/j.coche.2024.101046

37. Kanlayavattanakul M, Mersni D, Lourith N. Plant-derived saponins and their prospective for cosmetic and personal care products. *Bot Stud.* 2024;65(1):32. Doi: 10.1186/s40529-024-00438-8.

38. Yuan Y, Chen C, Guo X, Li B, He N, Wang S. Noncovalent interactions between biomolecules facilitated their application in food emulsions' construction: A review. *Compr Rev Food Sci Food Saf.* 2024;23(1):13285. Doi: 10.1111/1541-4337.13285.

39. Tu Y, Li L, Fan W, Liu L, Wang Z, Yang L. Development of Green and Efficient Extraction of Bioactive Ginsenosides from *Panax ginseng* with Deep Eutectic Solvents. *Molecules.* 2022;27(14):4339. Doi: 10.3390/molecules27144339

40. Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. *Expert Opin Drug Deliv.* 2023;20(1):93-114. Doi: 10.1080/17425247.2023.2154075

41. Moulik SP, Rakshit AK, Naskar B. Physical chemical properties of surfactants in solution and their applications: A comprehensive account. *J Surfactants Deterg.* 2024;27(6):895-925. Doi: <https://doi.org/10.1002/jsde.12757>

42. Latreille B, Paquin P. Evaluation of emulsion stability by centrifugation with conductivity measurements. *J Food Sci.* 1990;55(6):1666-1668. DOI: 10.1111/j.1365-2621.1990.tb03595.x

43. Okolie NP, Falodun A, Davids O. Evaluation of the antioxidant activity of root extract of pepper fruit (*Dennettia tripetala*), and its potential for the inhibition of lipid peroxidation. *Afr J Tradit Complement Altern Med.* 2014;11(3):221-227. Doi: 10.4314/ajtcam.v11i3.31.

44. Chondrou AP, Evgenidis SP, Karapantsios TD, Kostoglou M. Emulsions stability in weightlessness: Droplets size, droplets coalescence and phases spatial distribution. *Colloid Surface A.* 2024;702:134943. Doi: 10.1016/j.colsurfa.2024.134943

45. Ling M, Huang X, He C, Zhou Z. Tunable rheological properties of high internal phase emulsions stabilized by phosphorylated walnut protein/pectin complexes: The effects of pH conditions, mass ratios, and concentrations. *Food Res Int.* 2024;175:113670. Doi: 10.1016/j.foodres.2023.113670.

46. Zhu P, Chen J, Ding Y, Liu P, Fan H, Yang M. pH/ion dual-responsive emulsion via a cationic surfactant and positively charged magnesium hydroxide nanosheets. *Langmuir.*

2024;40(10):5360-5368.
Doi: 10.1021/acs.langmuir.3c03830

47. de Carvalho DM, Lahtinen MH, Figueiredo P, Hirvonen SP, Hietala S, Mikkonen KS. Modulating the Spontaneous Adsorption of Lignin Nanoparticle at Oil-Water Interfaces.

Macromol Rapid Commun. 2025;2500120. Doi: 10.1002/marc.202500120.

48. Ow V, Lin Q, Wong JHM, Sim B, Tan YL, Leow Y, Goh R, Loh XJ. Understanding the interplay between pH and charges for theranostic nanomaterials. Nanoscale. 2025;17:6960-6980. DOI: 10.1039/D4NR03706E