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Introduction  

Public trust in safe therapies using natural ingredients has 

increased in recent decades. The demand for traditional plant-based 

medicines is growing due to the perception of low risk of side effects 

and the sustainability of natural resources. In that context, the 

exploration of traditional medicinal plants has become very important 

for the scientific discovery of effective bioactive compounds and their 

mechanisms of action1. Carthamus tinctorius L., which is known in the 

Makassar language as Kasumba Turate, is a traditional medicinal plant 

used by the Bugis-Makassar people to treat chickenpox.  
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The plant has also been reported  to show antiviral, antioxidant, anti-

inflammatory, antiallergic, and anticancer activity2,3. Several studies 

have confirmed the antioxidant activity of C. tinctorius. C. tinctorius 

seed extract shows the potential for neutralising free radicals of 2,2-

diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS), as well as  Ferric 

Reducing Antioxidant Power (FRAP). Other studies reported  that the 

phenolic and flavonoid content of . C. tinctorius  flowers have potent 

antioxidant activity as well as anti-inflammatory abilities in both in 

vitro and in vivo  models4,5. Research on the anti-inflammatory and anti-

pain effects of C. tinctorius also supports its traditional use. Selected 

hydroalcoholic extracts and flavonoids (e.g., kaempferol glycosides) 

showed reduced inflammation in the oedema model and pain test 

compared to standard controls such as aspirin6.  

The immunomodulatory activity of these plants has also been 

investigated. The polysaccharide fraction of C. tinctorius leaves or 

flowers increases the proliferation of spleen B cells and activates 

macrophages in in vitro studies.   Antiviral activity of C. tinctorius has 

also been reported. This plant extract decreased the replication of the 

Kaposi's sarcoma-associated herpesvirus (KSHV) virus in in vitro 

studies7. In addition, the sesquiterpenoid compounds of safflower 

flowers show the ability to suppress oxidized-low density lipoprotein-

induced (ox-LDL-induced) foam cell formation in RAW 264.7 cells and 

reduce the production of Lipopolysaccharide-induced nitric oxide 

(LPS-induced NO), which is a sign of anti-inflammatory activity 
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The growing interest in natural products have encouraged the study of traditional medicinal plants as 

therapeutic candidates. Carthamus tinctorius, locally called Kasumba Turate in Makassar, Indonesia, 

has been used in Bugis–Makassar ethnomedicine. In addition to its traditional use, the plant is known to 
possess antiviral, antioxidant, anti-inflammatory, anti-allergic, and anticancer activities. Despite these 

reported benefits, its molecular mechanisms particularly those related to immunomodulation and 

inflammatory regulation are still not well clarified. This study applied a network pharmacology approach 
to explore the pharmacological basis of C. tinctorius. Bioactive compounds were identified from major 

phytochemical databases and validated via PubChem. Drug-likeness and pharmacokinetic properties 

were evaluated using SwissADME and ADMETlab 3.0. Potential targets were predicted through 
SwissTargetPrediction and SEA. PPI networks were generated using STRING-DB, and hub proteins 

were determined with CytoHubba in Cytoscape. KEGG pathway enrichment analysis was then 

conducted, focusing on immunomodulatory and inflammatory pathways. In silico screening yielded 73 

drug-like molecules, with 39 showing favorable ADME profiles and potential for good oral 

bioavailability. Target prediction identified 136 proteins associated with immune regulation and 

inflammation, with key hubs including EGFR, TNF, NFKB, and AKT1. Enrichment analysis showed 
major involvement in chemokine signaling, PI3K–Akt, TNF, MAPK, and NK cell-mediated cytotoxicity 

pathways. These findings support the pharmacological justification for the traditional use of C. tinctorius 

and provide a scientific foundation for its advancement as a multi-target herbal immunomodulator. 
Further experimental and clinical investigations are needed to confirm the network-predicted 

interactions and assess its therapeutic potential. 
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relevant to cardiovascular disease8,9. 

The chemical content of C. tinctorius has also been mapped in detail. 

The main components of the seed oil are fatty acids such as linoleic 

(about ~80%), oleic, and palmitic. HSYA (Hydroxysafflor yellow A) 

compounds, flavonoids, quercetin, rutin, kaempferol, and other 

phenolic compounds have been identified as active molecules involved 

in antioxidant, anti-inflammatory, immunomodulatory, and anticancer 

effects10,11. 

The system biology approach in the study of medicinal plants offers a 

more holistic way to understand therapeutic effects. This approach 

combines classical pharmacology (in vitro/in vivo activity tests, doses, 

and toxicity) with pharmacodynamics (cellular and molecular 

mechanisms) and bioinformatics/bio-medical systems (regulatory 

networks, signalling pathways, and gene/protein targets). The 

combination forms the discipline of "pharmacological systems", which 

is capable of interpreting the working mechanisms of traditional 

medicine comprehensively12. 

Based on this scientific description, this study aims to interpret the 

mechanism of action of compounds sourced from  C. tinctorius as an 

immunomodulatory and anti-inflammatory therapeutic agent, as well 

as its potential role against diseases related to immune dysfunction and 

chronic inflammation, such as viral infections, autoimmune disorders, 

or degenerative conditions. This research is vital because scientific 

evidence on local (traditional) uses, such as chickenpox treatment by 

the people of Makassar, has not been widely documented molecularly 

and systematically. Exploration through pharmacological systems can 

close the gap between traditional uses and modern clinical applications. 

 

Materials and Methods  
 

Compilation of C. tinctorius Bioactive Compounds Database  

The bioactive constituents of C. tinctorius were compiled from 

established phytochemical databases, including Knapsack Version 

1.200.03, by Nara Institute of Science and Technology, Japan; 

(https://www.knapsackfamily.com/KNApSAcK_Family/) and Dr. 

Duke’s Phytochemical and Ethnobotanical Databases Last updated 

June 2025, by US Department of Agriculture 

(https://phytochem.nal.usda.gov/). Additional compounds were 

identified through a review of recent scientific literature to ensure a 

comprehensive and reliable dataset. All collected compounds were then 

validated and standardized in Simplified Molecular Input Line Entry 

System (SMILES) format using the PubChem database (National 

Library of Medicine; 8600 Rockville Pike, Bethesda, MD 20894). This 

process is carried out to ensure that the digital representation of 

bioactive compounds can be used in subsequent pharmacoinformatics 

analysis13. 

 

Bioactive Compound Screening 

Screening was carried out to select bioactive compounds that have the 

potential to be drug candidates based on drug-likeness. The parameters 

used include Lipinski's Rule of Five, Veber's rule, and Muegge's 

criteria. Additional parameters such as molecular weight (MW), Caco-

2 permeability, human intestinal absorption, ability to penetrate the 

blood-brain barrier (BBB), and toxicity (LD50) were also analysed to 

predict the pharmacokinetic properties and safety of the compound. The 

analysis was carried out using the SwissADME by the SIB Swiss 

Institute of Bioinformatics, 2025 version (http://www.swissadme.ch)14 

and  ADMETlab 3.0 by Xiangya School of Pharmaceutical Sciences, 

Central South University, China (2020 version)  

(https://admetmesh.scbdd.com/) platforms which allows for an 

integrated assessment of compounds' pharmacokinetics, toxicity, and 

bioavailability15. 

 

Target Protein Fishing 

The potential target proteins of the active compounds that pass the 

screening abovewere identified by the in silico approach. Target 

prediction was carried out using SwissTargetPrediction by the SIB 

Swiss Institute of Bioinformatics, 2025 version  

(http://www.swisstargetprediction.ch)16 and Similarity Ensemble 

Approach (SEA) by the Shoichet Laboratory, Department of 

Pharmaceutical Chemistry, University of California, San Francisco 

(UCSF), 200717. Both platforms allow mapping the relationship 

between the chemical structure of bioactive compounds and human 

target proteins through ligand similarity approaches and reported 

pharmacological interactions. The prediction results were then 

compiled and analysed to obtain protein candidates relevant to 

immunomodulatory and anti-inflammatory mechanisms. 

 

Network Pharmacology Construction 

The Protein–Protein Interaction (PPI) network was constructed using 

the STRING database by Academic Consortium (Swiss-Denmark, 

EURO) Version 12.0 (https://string-db.org)18. The resulting networks 

were then analysed using the Cytoscape version 3.9.1, specifically with 

the CytoHubba19 plugin module to identify key proteins (hub proteins) 

that have a central role in biological regulation. In addition, a network 

of relationships between bioactive compounds and target proteins were 

also built to visualise the molecular linkages involved. Biological 

pathway enrichment analysis was carried out using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) by Kanehisa 

Laboratories, Japan, Version 202520. With a focus on pathways relevant 

to inflammatory and immunomodulatory mechanisms. 

 

Results and Discussion 
 

Identification of Bioactive Phytochemicals in C. tinctorius 

In this study, a total of 151 bioactive chemical constituents of C. 

tinctorius Linn. were identified by retrieving data from the KnapSack 

and Dr. Duke’s Phytochemical Databases, supplemented with 

information gathered from recent international scientific literature. For 

clarity and ease of reference, the complete list of compounds obtained 

from Carthamus floral extracts was presented in the supplementary 

appendix, as the dataset is too extensive to be included in the main 

manuscript. The pharmacokinetics analysis of Absorption, Distribution, 

Metabolism and Excretion (ADME) of the compounds were predicted. 

ADME analysis employed the SwissADME 

(http://www.swissadme.ch/) and ADMETlab 3.0 

(https://admetlab3.scbdd.com/) web-based webservers, which can be 

accessed and leveraged for predictive modeling of the physicochemical 

properties, pharmacokinetics, drug similarities, and medical chemical 

properties of a compound. The platform has a BOILED-Egg-based 

analysis approach to estimate absorption and permeability, iLOGP for 

lipophilicity evaluation, and Bioavailability Radar for an overall picture 

of molecular bioavailability. Both platforms facilitate the process of 

selecting potential molecular candidates by predicting critical 

parameters in drug development. The SwissADME platform  

http://www.swissadme.ch/ provide an intuitive and accessible web-

based interface, facilitating the process of data input and interpretation 

of predictive results in a simple and efficient way for users from a wide 

range of skill backgrounds15,21. Based on the results of the ADME 

analysis, 73 compounds met  the drug-likeness criteria set by Ghose, 

Veber, Lipinski, Muege, and Egan. The most  widely used drug-likeness 

criteria  standard is the Lipinski Rule of Five. The Lipinski Rule of Five 

provides a simple and efficient guideline for assessing the likelihood of 

success of a compound as an orally absorbable drug based on 

physicochemical parameters commonly found in successful oral drugs. 

Lipinski's Rule of Five includes (i) Molecular Weight <500, (ii) 

Lipohicity (MLogP) <5, (iii) H-Bond Acceptor <10, (iv) H-Bond 

Donors <5 and (v) Rotable Bonds <10; and, a maximum Lipinski rule 

violation of one 22. Of the 72 compounds that met  the drug-likeness 

criteria,  61 compounds were identified with a maximum violation of 1  

of the Lipinski Rule of Five as described by bioavaviability radar.  

The next analysis used was the BOILED-Egg analysis, which described 

the ability of the compounds to penetrate the blood brain barrier (BBB) 

and absorption in  the gastrointestinal tract as a reference to determine 

whether the compound has the potential to be good as an oral drug23. 

BOILED-Egg Analysis (Figure 1.) shows that there are 39 compounds 

that have  a high gastrointestinal tract absorption, most of which are 

derived from compounds in the flowers (Quinochalcones: Cartorimine; 

Flavonoids: Acacetin, Apigenin, Kaempferol, Quercetin, Scutellarein, 

Daphnoretin, Isorhamnetin, and Umbelliferone; Alkaloid: Adenine, 

https://www.knapsackfamily.com/KNApSAcK_Family/
http://www.swissadme.ch/
https://admetmesh.scbdd.com/
http://www.swisstargetprediction.ch/
https://string-db.org/
http://www.swissadme.ch/
https://admetlab3.scbdd.com/
file:///C:/Users/HP/Downloads/%20http:/www.swissadme.ch/
file:///C:/Users/HP/Downloads/%20http:/www.swissadme.ch/
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Thymine, and Uracil; Organic Acid: p-coumaric acid, p-

hydroxybenzoic acid, Succinic acid; Other components: Propionate, 

and Methylsyringin). Then, one compound in the leaf (Flavonoids: 

Luteolin) and the rest of the compounds in the seed (Alkaloids: N-(p-

coumaroyl) serotonin, N-(p-coumaroyl) tryptamine, N-

feruloylserotonin, N-feruloyltryptamine, Serotobenin; Organic acid: 

Caffeic acid, Ferulic acid, Myristic acid, Palmitic acid, Palmitoleic acid, 

Sinapic acid, Stearic acid, Linoleic acid, Linolenic acid, and Oleic acid; 

Other component: Arctigenin, Coniferyl alcohol, Matairesinol, 

Secoisolariciresinol, Sinapyl alcohol, and Trachelogenin) and 12 

compounds (Umbelliferone, p-coumaric acid, p-hydroxybenzoic acid, 

N-(p-coumaroyl) tryptamine, N-feruloyltryptamine, Ferulic acid, 

Myristic acid, Palmitic acid, Palmitoleic acid,  Arctigenin, Coniferyl 

alcohol, and Sinapyl alcohol) that can be absorbed through the blood 

brain barrier, which means they have a high probability value as drug 

candidates  which means it has superior oral bioavailability. Then, there 

were 21 compounds (Adenosine, Uridine, Guanosine, N1, N5, N10-(E)-

tri-p-coumaroylspermidine, N1, N5, N10-(Z)-tri-p-

coumaroylspermidin, Safflospermidine A, Safflospermidine B, 

Roseoside, Sitosterol, Syringin, 4-[N-(p-coumaroyl)serotonin-4"-yl]-

N-feruloylserotonin, 1-Tridecene-3,5,7,9,11-pentayne, 11Z-Trideca-

1,11-diene-3,5,7,9-tetrayne, 11E-Trideca-1,11-diene-3,5,7,9-tetrayne, 

3E-Trideca-1,3-diene-5,7,9,11-tetray, 3Z,11Z-Trideca-1,3,11-triene- 

5,7,9-triyne, 3Z,11E-Trideca-1,3,11-triene- 5,7,9-triyne, 3E,11E-

Trideca-1,3,11-triene- 5,7,9-triyne, 3E,5Z,11E-Trideca-1,3,5,11-

tetraene-7,9-diyne, 3Z,5E,11E-Trideca-1,3,5,11-tetraene-7,9-diyne, 

and 3E,5E,11E-Trideca-1,3,5,11-tetraene-7,9-diyne) with low 

gastrointestinal tract absorption  indicating low levels of bioviability or  

poor druglikeness24.  

 

 

 
Figure 1: Boiled-Egg diagram showing the distribution of 

absorption of compounds in the body. The Gray Zone means 

that the compound is not absorbed by the body. The egg white 

zone means that the compound can be absorbed by the human 

intestinal absorption (HIA) and the yolk zone means that the 

compound can penetrate the Blood Brain Barrier (BBB) zone 
 

Biological activity prediction 

The next analysis was biological activity prediction of the 39 

compounds contained  in C. tinctorius flowers. The results of the 

analysis were carried out using the PASS Online software (Way2Drug; 

https://www.way2drug.com/passonline/ )25. Figure 2 shows that the 

compounds contained in C. tinctorius flowers  are correlated with a 

series of immunomudulatory/antiinflamation and antioxidant systems, 

and have a Pa (the probability that the compound will be active) of more 

than 0.7, consisting of Cartorimine (Alkenylglycerophosphocholine 

hydrolase inhibitor, Pa: 0.762; Chlordecone reductase inhibitor, Pa: 

0.735), Precarthamin (Monophenol monooxygenase inhibitor, Pa: 

0.956, and Anaphylatoxin receptor antagonist, Pa: 0.882). In addition, 

it relates to the analgesic, inflammatory and anticancer systems i.e. 

Saffloquinoside B (Vanilloid agonist Pa: 0.933; Antioxidant Pa: 0.825). 

With regards to drug metabolism and immunomodulation, antioxidants, 

and inhibition of cell proliferation – Kaempferol (CYP2A4 substrate 

and CYP2C substrate Pa: 0.714 and 0.716, respectively  

Anticarcinogenic, Pa: 0.715). Anti-inflammatory and antiproliferative 

in Quercetin (CYP1A inducer, Pa: 0.951; MAP kinase stimulant and 

kinase inhibitor, Pa: 0.933), Rutin (Hemostatic, Pa: 0.993; 

Cardioprotective, Pa: 0.988). Immunomudulator and anticancer in 

Scutellarein (Anaphylatoxin receptor antagonist, Pa: 0.961; HIF1A 

expression inhibitor, Pa: 0.946), activation of therapeutic, anticancer 

and antiinflammatory responses – Daphnoretin (CYP2C12 substrate 

and CYP2 substrates, Pa: 0.941 and 0.903, respectively; HIF1A 

expression inhibitor, Pa: 0.836), Isorhamnetin (NADPH oxidase 

inhibitor, Pa: 0.946; Kinase inhibitors and MAP kinase stimulants, Pa: 

0.945 and 0.94, respectively). Detoxifying and anti-inflammatory, 

Umbelliferone (Chlordecone reductase inhibitor, Pa: 0.936; Membrane 

integrity agonist and Membrane permeability inhibitor, Pa: 0.937 and 

0.798, respectively). 

 

Target Fishing Protein, Construction of protein-protein, protein-ligand 

and disease-related signaling pathways 

The 39 compounds from  C. tinctorius  flower that had been obtained, 

were investigated for their target proteins (CP) through target protein 

analysis analysis using the Swisstargetprediction 

(http://www.swisstargetprediction.ch/) platform and 403 target proteins 

(red circles) were obtained as seen in Figure 3a. Furthermore, the 

investigation for proteins related to inflammation (IP) was carried out 

through GeneCard (https://www.genecards.org) with the keyword 

"inflammation" led to a total of 16,474 proteins (green circle) and 

proteins related to immunomodulators (MP) with the keyword 

"immunomodulator" gave 1,682 proteins (blue circle). The proteins 

identified from the CP, MP, and IP groups were subsequently 

compared, and their overlapping members were determined through a 

Venn diagram analysis (https://bioinfogp.cnb.csic.es/alat/venny). The 

results of the analysis of the venny diagram (Figure 3a.) were 136 

"inflammatory, immunomodulatory and target proteins of C. 

tinctorius". Furthermore, the 136 target proteins were constructed in  a  

protein-protein interaction (PPI) network using String-DB 

(https://string-db.org/), and the visualization  of the pharmacological 

network is presented in Figure 3c.    

The subsequent analysis involved assessing protein centrality using the 

Cytoscape platform, supplemented with the CytoHubba plugin—

specifically the Maximal Clique Centrality (MCC) algorithm—to 

identify the most central target proteins among the 136 previously 

constructed proteins. The obtained results were 15 proteins based on the 

MCC Cytohubba algorithm. These fifteen proteins were predicted to be 

effective inflammatory and immunomodulatory targets of the bioactive 

compound of C. tinctorius. Furthermore, the construction of 15 central 

proteins and active compounds  of C. tinctorius  flowers were carried 

out.  Target-disease networks on the 15 central target proteins, were 

employed to construct all the central target proteins and its associated 

diseases26. The results of the analysis of Cytohubba using the MCC 

method of 15 central target proteins were presented in Figure 3b. The 

15 target proteins are, EGFR (Epidermal growth factor receptor) , BCL2 

(B-cell leukemia/lymphoma 2) , NFKB1 (nuclear factor-kappa B), 

HSP90AA1 ( Heat shock protein 90kDa alpha (cytosolic), member A1), 

GAPDH (Glyceraldehyde-3-phosphate dehydrogenase), ESR1 

(Estrogen receptor 1), MTOR (mammalian target of rapamycin), TNF 

(Tumor necrosis factor),  MMP9  (Matrix metalloproteinase-9), AKT1 

(AKT Serine/Threonine Kinase 1), MMP2 (Matrix metalloproteinase-

9), MAPK1 (Mitogen-activated protein kinase 1),  PPARG (Peroxisome 

proliferator-activated receptor gamma), PTGS2 (Prostaglandin-

endoperoxide synthase 2) and SRC (Proto-oncogene tyrosine-protein 

kinase).  

 

https://www.way2drug.com/passonline/
http://www.swisstargetprediction.ch/
https://www.genecards.org/
https://bioinfogp.cnb.csic.es/alat/venny
https://string-db.org/
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Figure 2: Biological activity prediction percent (Pa), on 39 compounds contained  in C. tinctorius flowers.  using the analysis of the 

PASS Software Online (Way2Drug) 
 

The interaction of the active compounds of C. tinctorius  flower with 

the 15 target proteins were displayed in the 3d image. The compounds 

that interacted the most with the 15 target proteins were flavonoid 

compounds (i.e. Apigenin, Kaempferol and Scutellarrein with 7 

interactions). Then, the target protein with the most interactions with 

the active compounds of C. tinctorius flowers  is EGFR with 15 

interactions.  

Based on Figure 4, the results of the analysis of 136 proteins associated 

with inflammation, immunomodulators and interaction with 39 C. 

tinctorius compounds were found to have 20 pathways. These pathways 

were obtained from the analysis of interactions between proteins using 

the string-DB platform and was enriched using the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) Pathway Database 

(https://www.genome.jp/kegg/). Data visualization using the SRPLOT 

(https://www.bioinformatics.com.cn) platform.  

 

 

 

Based on Figure 4, the top five pathways associated with inflammatory 

activity, immunomodulatory and biological target of compounds of C. 

tinctorius are Chemokin signalling pathway, PI3K-Akt signalling 

pathway, C-type lectin receptor signalling pathway, TNF signalling 

pathway, Natural Killer cell mediated cytotoxicity, and MAPK 

signalling pathway. These pathways were further simplified in Figure 

5. The results of the imaging showed several target proteins of C 

tinctorius that are potential targets of its bioactive compounds including 

JAK2/3 and SRC in the Chemokin signalling pathway, AKT and NFKB 

in the TNFa signalling pathway, SYK in MAPK signalling pathway, 

RAF1 C-type lectin receptor signalling pathway, DAP in the Natural 

Killer cell mediated cytotoxicity pathway.  
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a  

b  

c  
Figure 3: Results of tracing proteins related to Inflammation, 

immunomodulators and target proteins of bioactive compounds 

of C. tinctorius. Figure 3a shows a venny diagram of the 

inflammation-related proteins (IP), immunomodulatory 

proteins (MP) and target proteins of the bioactive compounds 

C. tinctorius (CP). 3b  shows the 15 most central proteins of 

the 136 proteins through Cytohubba analysis using the 

Maximum Clicque Centralities (MCC) approach. 3d. Shows 

the interaction network of 15 proteins with the bioactive 

compound C. tinctorius 
 

 

 
Figure 4: The results of the analysis of 136 proteins involved 

in the pathway related to inflammation, immunomodulators 

and included in the target proteins of 39 C. tinctorius 

compounds. 
 

The in silico results showed that of the 151 bioactive compounds of C. 

tinctorius Linn. Identified, 73 compounds met the drug-likeness 

criteria. Meeting these criteria is important because rule-meeting 

compounds such as Lipinski, Veber, and Muegge tend to have better 

pharmacokinetic and pharmacodynamic properties in preclinical trials. 

The drug-likeness criterion  has been proven in many studies to be an 

effective initial filter for setting aside compounds with low potency in 

terms of absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) prior to further laboratory testing. 

The BOILED-Egg analysis identified 39 compounds from flowers with 

high gastrointestinal absorption, one compound from leaves, and 

several compounds from seeds that showed the capacity to break 

through the blood-brain barrier (BBB). The research herein found that 

compounds such as Umbelliferone, p-coumaric acid, Ferulic acid, 

Myristic acid, Palmitic acid, Palmitoleic acid, Arctigenin, Coniferyl 

alcohol, and Sinapyl alcohol were able to penetrate BBB suggests which 

suggest that these compounds have superior oral bioavailability and 

potential for systemic effects involving central tissues or 

neuromodulators. The potential for BBB penetration supports the 

possible use of the compound in neurological diseases or brain 

inflammation, as reported in a safflower seed-related study that 

corrected memory deficits in scopolamine models through antioxidant 

and oxidative stress inhibition mechanisms27. 

Predicting biological activity using PASSOnline for flower compounds 

with a Pa > of 0.7 indicates a high probability that these compounds will 

have immunomodulatory, anti-inflammatory, antioxidant, analgesic, 

and anticancer activities. For example, Cartorimine and Precarthamin 

exhibit inhibitory activity against enzymes and receptors related to 

inflammation and allergies. Compounds such as Quercetin, 

Scutellarein, Isorhamnetin, and Umbelliferone show potential 

modulation of cellular pathways such as MAP kinase, NADPH oxidase, 

and cell proliferation regulators. This is consistent with reports that 

flavonoid compounds from C. tinctorius can suppress inflammatory 

cytokine expression, inhibit iNOS and COX-2 activity 1, as well as 

activate antioxidant pathways such as Nrf228. 
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Figure 5: Distribution of C. tinctorius protein targets in several 

immunomodulatory and inflammatory related pathways. Purple 

nodes indicate potential targets. 
 

Target fishing analysis found 403 potential target proteins for 

compounds present in the flowers of C. tinctorius, and the intersection 

with the database of inflammatory and immunomodulatory proteins 

resulted in 136 proteins that were at the intersection of the three 

domains. The PPI network of 136 nodes and 1746 edges showed that 

compounds from safflower flower have complex molecular interactions 

with many proteins that have a high average node degree (~25.7), 

indicating that the compound's mechanism of action is multifactorial 

and likely has pleiotropic effects on various biological pathways29. 

Identification of 15 central proteins (hub proteins) specifically EGFR, 

BCL2, NFKB1, HSP90AA1, GAPDH, ESR1, MTOR, TNF, MMP9, 

AKT1, MMP2, MAPK1, PPARG, PTGS2, and SRC suggests that the 

active compounds of C. tinctorius flowers  are likely to modulate well-

known pathways in inflammatory mechanisms, cell proliferation, 

apoptosis, migration/metastasis, and immune regulation30. 

Pathway analysis based on KEGG showed that the five main pathways 

associated were Chemokine signalling, PI3K-Akt signalling, C-type 

Lectin receptor signalling, TNF signalling, Natural Killer cell mediated 

cytotoxicity, and MAPK signalling pathway. The PI3K-Akt and TNF 

pathways are specifically often associated with the regulation of 

proinflammatory cytokine products (such as TNF-α, and IL-6), immune 

cell overactivation, and the formation of chronic inflammatory 

responses. Many studies have shown that extracts or compounds from 

C. tinctorius may inhibit the PI3K/Akt/mTOR pathway in the context 

of liver fibrosis, cancer, or systemic inflammation31. For example, C. 

tinctorius was reported to inhibit fibrotic cell activation and 

PI3K/Akt/mTOR pathways in liver fibrosis studies32. 

Compounds that affect AKT and NFKB as targets (such as Quercetin, 

Kaempferol, Scutellarein, Daphnoretin, and Isorhamnetin) show that 

the in silico predicted immunomodulation and anti-inflammatory are 

consistent with preclinical test results that showed decreased 

proinflammatory cytokine expression, decreased edema, and inhibition 

of NFKB and iNOS/COX-2. For example, in vivo studies showed that 

safflower flower extract lowered edema and levels of TNF-α and IL-6 

in a mouse model with induction of inflammatory agents Complete 

Freund's Adjuvant (CFA)33,34. 

The relationship between compounds and the ability to penetrate BBB 

also offers numerous advantages. Many modern drugs have to cross the 

BBB for diseases involving the nervous system, while many plant 

compounds fail at the distribution stage because they are unable to 

penetrate the BBB. The findings of the research herein suggest that 

compounds such as Umbelliferone and some phenolic acids and lipid 

compounds from C. tinctorius seeds  have a high probability of BBB 

penetration which indicate therapeutic opportunities for neurological 

diseases, such as dementia or neuroinflammatory disorders35. 

From the overall data, bioactive compound sourced from C. tinctorius 

showed pharmacokinetic attributes, a biological activity profile, and 

molecular network interactions that support immunomodulatory and 

anti-inflammatory activity. These findings confirm  its traditional use 

as a cure for chickenpox or any inflammatory-related disease by the 

Bugis-Makassar people has a molecular correlation that can be 

explained scientifically. 

 

Conclusion 
This study provides comprehensive network pharmacology evidence 

that C. tinctorius (Kasumba Turate) contains multiple bioactive 

compounds with strong immunomodulatory and anti-inflammatory 

potential. In silico screening identified 73 drug-like molecules, of which 

39 demonstrated favorable ADME properties and several showed 

blood–brain barrier permeability, suggesting high oral bioavailability. 

Target fishing revealed 136 intersecting proteins linking C. tinctorius 

compounds with immune regulation and inflammation, highlighting 

central nodes such as EGFR, TNF, NFKB, and AKT1. Pathway 

enrichment further indicated that these targets are primarily involved in 

chemokine signalling, PI3K–Akt, TNF, MAPK, and NK cell-mediated 

cytotoxicity pathways—key regulators of inflammation and immune 

responses. Collectively, these findings reinforce the pharmacological 

rationale for the traditional use of C. tinctorius and establish a scientific 

basis for its development as a multi-target herbal immunomodulator. 

Future experimental and clinical studies are warranted to validate these 

network-predicted interactions and explore therapeutic applications 
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