

Tropical Journal of Natural Product Research

Available online at <https://www.tjnp.org>

Original Research Article

***Moringa oleifera* Seed Oil Nanoemulsion Using Tween 80 and Polyethylene Glycol 400: Oil Characterization and Formula Optimization**

Mutmainah^{1,5}, Akhmad K. Nugroho^{2*}, Triana Hertiani³, Adhyatmika⁴

¹Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

²Department of Pharmaceutic, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia

³Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia

⁴Department of Pharmaceutic, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia.

⁵Faculty of Pharmacy, Semarang College of Pharmaceutical Sciences (Stifar Yayasan Pharmasi Semarang), Letnan Jendral Sarwo Edie Wibowo, Semarang, 50192, Indonesia

ARTICLE INFO

Article history:

Received 26 January 2025

Revised 16 February 2025

Accepted 19 March 2025

Published online 01 May 2025

ABSTRACT

Moringa oleifera is a useful plant known for its antialopecia properties. Nanoemulsions have been proven effective as a carrier for the delivery of lipophilic compounds in *Moringa oleifera* seed oil to increase the permeation of active ingredients. This study aimed to characterize the physical and chemical properties of *Moringa oleifera* seed oil and identify its composition using GCMS, optimize the formulation of a nanoemulsion containing *Moringa oleifera* seed oil, using Tween 80 as a surfactant and PEG 400 as a co-surfactant. The optimal formulation was determined using Design-Expert through the simplex lattice design approach. A total of 14 formulations were tested for particle size response, polydispersity index (PDI), and zeta potential. The results showed that *Moringa oleifera* seed oil contained 12 fatty acids, with oleic acid as the most abundant (71.52%), followed by palmitic (8.05%), stearic (5.99%), behenic (5.31%), and arachidic acid (2.97%). The acid value, peroxide, density, saponification, refractive index, and moisture content of the oil were 0.46 mg KOH/g oil, 6.28 meq O₂/kg oil, 0.915 grams/cm³, 253.5 mg KOH/g oil, as well as 1.4668 and 0.12% w/w, respectively. The optimal formulation obtained consisted of 6.401% *Moringa oleifera* seed oil, 36% Tween 80, and 18.599% PEG 400. Evaluation of the optimal formula showed particle size response value was 237.06 nm, PDI 0.467, zeta potential -20.89 mV, transmittance value 97.7%, spherical shape in observations using TEM. Nanoemulsion containing high quality of *Moringa oleifera* seed oil was able to be formulated, which may serve as a promising dosage form for hair growth treatments.

Keywords: Simplex lattice design, *Moringa oleifera* seed oil, Tween 80, PEG 400, Nanoemulsion

Introduction

Hair plays a crucial role in human identity and aesthetics. Several hair-related disorders, are alopecia, discoloration, and hirsutism.¹ Among these, alopecia, particularly androgenic alopecia (AGA), is a common dermatological disorder that significantly affects mental well-being and overall quality of life. An epidemiological survey conducted in China reported an AGA prevalence of 21.3% in men and 6.0% in women.² Due to its high prevalence, alopecia has become a subject of extensive research. Some treatments used for alopecia, such as minoxidil and finasteride, have unpredictable side effects,³ including dizziness, allergic dermatitis, and cardiovascular disease.⁴ As a result, there is a growing need for natural alternatives in the search for new anti-aloepecia agents. One such potential treatment is *Moringa oleifera* seed oil.

Moringa oleifera Lamk. is a plant originating from the sub-Himalayan region of North India. This plant is widely distributed in tropical and subtropical areas at altitudes of approximately 2000 m.⁵ All plant parts such as pods, seed, bark, leaves, and flowers can be consumed and used by humans.⁶ Seed contains high-quality fatty acids such as oleic acid (> 70%), with a large amount of oil (up to 40%).⁷ Additionally, there is phytosterol content such as stigmasterol and β sitosterol.⁸ Korassa *et al.* (2022) found that the phytosterol compounds and fatty acids in *Moringa oleifera* seed oil have potential as anti alopecia agents.⁴ The lauric and linoleic acid in the oil are hair nutrients and can accelerate growth by inhibiting the enzyme 5 α -reductase.⁴ However, one of the main limitations of *Moringa oleifera* seed oil is its poor applicability and practicality in topical use. As an oily liquid, it has the potential to cause dandruff. Therefore, a delivery system and dosage form are required to enhance user comfort, improve the penetration of active ingredients through the scalp and stratum corneum barrier, facilitate accumulation in hair follicles, and ensure physical stability. Furthermore, the use of *Moringa oleifera* seed oil in preparations requires the consideration of several factors, such as stability, benefits, and safety.

Nanotechnology is a controlled delivery widely utilized in pharmaceuticals, cosmetics, and food industries to optimize the dispersion of active ingredients.⁹ Nanoparticle preparations such as solid lipids, nanogels, polymers, liposomes, and nanoemulsion have been shown to prevent external degradation of herbal medicines and increase their bioavailability.¹⁰ Among these, nanoemulsion is a promising carrier for the delivery of lipophilic compounds, improving the permeation of active ingredients. This method provides a transparent appearance and exhibits greater stability against creaming and flocculation compared to conventional emulsion preparations.

*Corresponding author. E mail: a.k.nugroho@ugm.ac.id

Tel.: +6282136106565

Citation: Mutmainah, Nugroho AK, Hertiani T, Adhyatmika. *Moringa oleifera* Seed Oil Nanoemulsion Using Tween 80 and Polyethylene Glycol 400: Oil Characterization And Formula Optimization. *Trop J Nat Prod Res.* 2025; 9(4): 1843 – 1852 <https://doi.org/10.26538/tjnp.v9i4.59>

Official Journal of Natural Product Research Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria

Nanoemulsion also increases the surface area and penetration of active substances.¹¹ In this context, nanoemulsion has been identified as a potential carrier for delivering lipophilic compounds in *Moringa oleifera* seed oil to increase the permeation of active ingredients. This preparation consists of oil and water phases, which are stabilized by the presence of surfactant and cosurfactant as important components.¹² Surfactants lower interfacial tension by reducing the repulsive force of immiscible liquid.¹³ Meanwhile, cosurfactants prevent aggregation and increase pH stability.¹⁴ A study by Tirmiara *et al.* (2019) revealed that the nanoemulsion *Moringa oleifera* seed oil, formulated with Tween 80 and sorbitol as surfactants, resulted in a particle size of 52.25 nm.¹⁵ However, there is no research on the use of Tween 80 and PEG 400 in *Moringa oleifera* seed oil nanoemulsion preparations, so researchers want to do this research. Tween 80 is a non-ionic surfactant with an HLB value of 15, forming an oil-in-water type emulsion.¹⁶ A higher concentration of Tween 80 leads to increased clarity, higher transmittance values, and smaller particle sizes.¹³ Polyethylene glycol 400 (PEG 400) is used as cosurfactant to improve the stability of nanoemulsion particularly in pharmaceutical, cosmetic.^{17,18} Structurally, PEG 400 is a mid chain hydrocarbon that can be placed between the gaps of the nanoemulsion system by the formation of hydrogen chains so that it can be placed between the gaps nanoemulsion system with the formation of hydrogen chains so as to maximize the emulsification process in the preparation of nanoemulsions.¹⁷

In this study, the analysis and characterization of *Moringa oleifera* seed oil aim to evaluate its quality and composition after extraction. Existing research on the hair growth activity of *Moringa oleifera* seed oil remains general and has not yet explored its formulation using nanoparticle technology as a hair growth agent. This study aimed to optimize the preparation of nanoemulsion with the concentration of *Moringa oleifera* seed oil, Tween 80, and PEG 400. This was followed by the analysis of the characteristics of *Moringa oleifera* seed oil nanoemulsion. Response characteristic parameters were determined using expert design including particle size, polydispersity index (PDI), zeta potential. The nanometer-scale particle size of nanoemulsions is expected to enhance penetration and facilitate the accumulation of targeted drugs in the dermal layer of the skin.¹⁰ This aims to optimize the topical application of the formulation. An appropriate combination of oil, Tween 80, and PEG 400 is anticipated to further support this objective.

Materials and Methods

Materials

The materials used in this study included *Moringa oleifera* seed oil, Tween 80, PEG 400 (Brataco Indonesia), and distilled water. The instruments used in this study include Particle Size Analyzer (HORIBA SZ-100), Zeta Nanosizer (Zetasizer), Hot Plate Magnetic Stirrer (Thermo Scientific, China), Sonicator (Elma Transsonic 570), and a Transmission Electron Microscope (TEM) (JEOL/EO JEM-1400 version 1.0).

Collection and Identification of *Moringa oleifera* seed

Moringa oleifera seed was obtained from the Blora region, Central Java, Indonesia in May 2024. *Moringa oleifera* seed was botanically identified in Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Extraction of the oil

The oil was extracted using a cold pressing system (capacity: 2–6 L/h) without the application of heat. Six point one kg of *Moringa oleifera* seed was weighed, the seed skin was peeled and placed into a cold press machine. The extraction process consisted of grinding *Moringa oleifera* seeds and pressing them with a conical screw at a gradually increasing pressure of 250 kg/N. The oil was then expelled through a perforated tube. The oil obtained was stored in a tightly closed container, and the yield value was calculated.¹⁹

Characterization of physical and chemical properties of *Moringa oleifera* seed oil

The determination of physical and chemical properties of *Moringa oleifera* seed oil were characterized based on organoleptic, acid number, peroxide number, density, saponification number, refractive index, and water content. The determination of density and refractive index followed the AOAC standard methods. Density was measured using a pycnometer, while the refractive index was determined using an Abbe Refractometer.²⁰

Analysis of Fatty Acid Composition using GCMS

The oil was hydrolyzed, derivatized, and then analyzed using a GC-MS equipped with an autoinjector. A total of 5–20 mg of *Moringa oleifera* seed oil was dissolved in 1 mL of 20% of boron trifluoride in methanol. The mixture was heated in an ultrasonic bath at 60°C for 20 minutes, and then allowed to cool. Subsequently, 2 mL of n-hexane was added, and the mixture was vortexed, and centrifuged at 4000 rpm for 10 minutes. The upper layer (n- hexane) was collected into a collection vial and injected into the GC-MS. The analysis was performed using a DB-Fast FAME capillary column (30 m × 250 µm × 0.25 µm) on an Agilent GCMS system (8890 GC System, 5977B GC/MSD, 7693A Autosampler).

The GC oven temperature was maintained at 60°C, programmed to 200°C at a rate of 2°C/min, and held constant at 250°C for 48 minutes. High-purity helium was used as the carrier gas at a constant flow rate of 1 mL/min. The split ratio and flow rate were set at 20: 1 and 20 mL/min, respectively. The injection volume of the oil mixture was 1 µL. The ion source temperature was set to 200°C and while the interface was set to 230°C. The electron impact (EI) ionization mode used an ionization energy of 70 Ev column linear velocity of 36 cm/s, with mass ranging from m/z 30 to 700.¹⁹

Optimization of *Moringa oleifera* seed oil nanoemulsion

The formula optimization process was conducted using the simplex lattice design in Design Expert version 13. The response variables considered for optimization included particle size, PDI, and zeta potential. The initial step taken was to adjust the model to the response. Furthermore, the optimal formula was determined by observing the value closest to the desired value. All materials were weighed as shown in Table 1. The mixture was homogenized using a magnetic stirrer for 30 minutes at a temperature of 25°C at a speed of 800 rpm and sonicated for 10 minutes (one cycle). The mixing process was carried out in two cycles.

Evaluation of *Moringa oleifera* seed oil nanoemulsion preparation

Organoleptic test

The test was carried out by visually observing the color, odor, and consistency of the formulations. Subsequently, observations were carried out visually.¹⁴

Particle size, PDI, and zeta potential

The particle size, PDI, and zeta potential of nanoemulsion were analyzed using Malvern Particle Size Analyzer (PSA) at 25°C with a scattering angle of 90°.²¹ The zeta potential was measured after the samples were dissolved in purified water. The zeta potential indicates the electrical charge on the surface of the nanoparticles, suggesting that the colloidal carrier system remains physically stable.²²

Percentage transmittance

The transmittance percentage value was measured using a UV-Vis spectrophotometer at a wavelength of 650 nm.²³

Morphology of *Moringa oleifera* seed oil nanoemulsion

The morphological characteristics of nanoemulsion containing *Moringa oleifera* seed oil were performed using a Transmission Electron Microscopy (TEM). Initially, a drop of the sample was placed onto a carbon film copper grid. This was followed by adding a drop of uranyl acetate to enhance the contrast of the sample before analysis.¹³

Statistical analysis

Data analysis was performed using Design Expert version 13 to determine the effect of *Moringa oleifera* seed oil, Tween 80, and PEG 400 on nanoemulsion evaluation response. Statistical analysis was performed

using ANOVA, where significance was determined at a *p*-value ≤ 0.05 .²⁵ Subsequently, the optimum nanoemulsion formula was verified through t-test using IBM SPSS Statistics 23 software.

Table 1: Upper and lower limit values of *Moringa oleifera* seed oil nanoemulsion in Design Expert

Ingredient	Under limit (%)	Upper limit (%)
<i>Moringa oleifera</i> oil	5	9
Tween 80	36	40
PEG 400	16	20

Results and Discussion

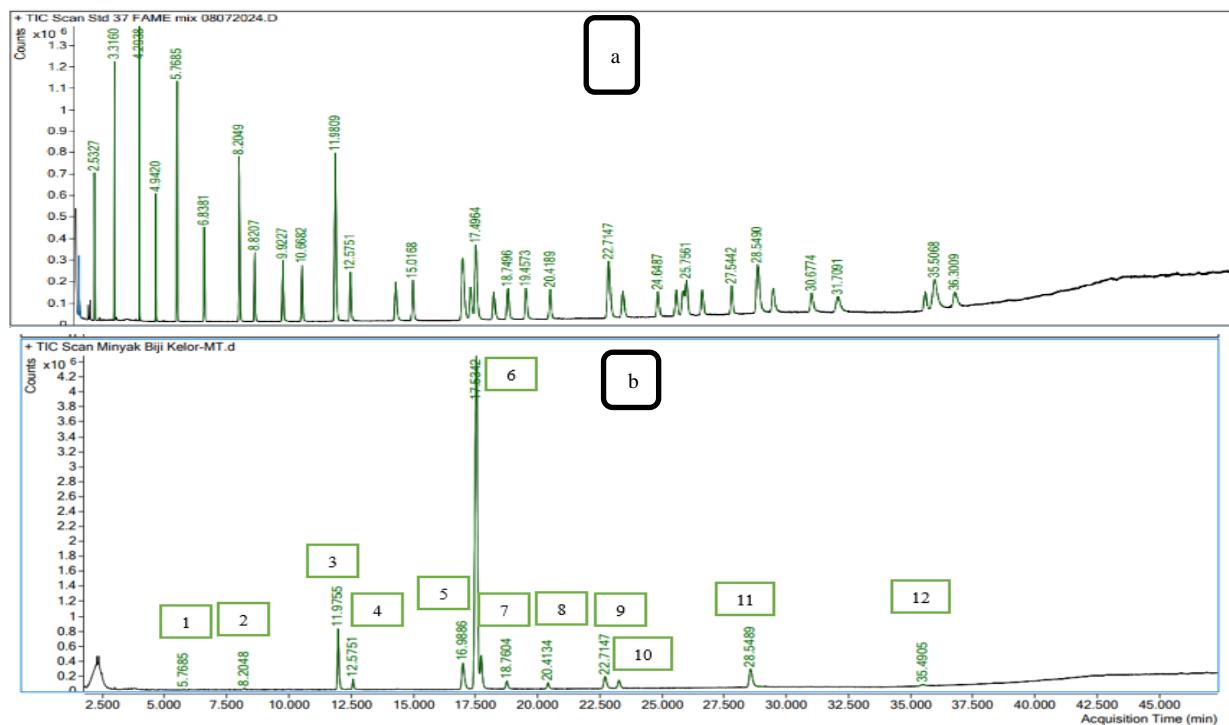
Extraction of *Moringa oleifera* seed oil

In the current study, mature *Moringa oleifera* seeds were used, characterized by their black seed coat. The separation between the skin and seed was performed manually. The oil was obtained through cold pressing, a method that applies mechanical pressure to break the cell walls, facilitating oil release.²⁶ Our extraction produced yellowish oil that was transparent and odorless, with yield of 14.73%. The peeled seed were heated at a temperature of 70 °C for 15 minutes. This process was carried out to unite and collect oil granules, allowing easy flow from seed flesh and reduced affinity for efficient extraction. Heating was also performed to increase oil dilution, evaporate water to a certain extent, deactivate enzymes, and coagulate proteins, thereby enhancing further separation.²⁶

Physicochemical properties of *Moringa oleifera* seed oil

The physicochemical properties of *Moringa oleifera* seed oil obtained by cold press are shown in Table 2. These values provided information regarding the oxidation status and possible impurities in *Moringa oleifera* seed oil.²⁷ The acid value of *Moringa oleifera* oil obtained was 0.46 mg KOH/g, which serves as a crucial indicator of oil rancidity and stability. The acid value is utilized to determine the degradation level of the triglyceride content of the oil through the action of lipase.²⁸ The high content of fatty acids suggests that many fatty acids have been released from glycerol, where glycerol can help fatty acids form triglycerides. High free fatty acids also affect flavors of oils.²⁹ The high saponification value was shown by the presence of high molecular weight triacylglycerols, which are beneficial for soap production.³⁰ The results indicate that the oil has a saponification value that is useful for industrial soap production. Ozcan *et al* (2019) reported the physicochemical properties of *Moringa oleifera* seed oil from Saudi Arabia by cold pressing, reported an acid number of 1.91 mg KOH/g, a peroxide number of 7.2 meq O₂/kg, and a saponification value of 181.3 mg KOH/g. In comparison, the *Moringa oleifera* seed oil obtained in this study exhibited low peroxide values, indicating a low free fatty acid content.³¹ The oil has a peroxide value of <10 meq/kg, which can be used to determine the storage stability of the oil as well as to guard against oil rancidity caused by primary oxidation factors such as hydroperoxides, oxygen, temperature, and light. It can be concluded that *Moringa oleifera* seed oil obtained by cold press extraction technique is stable and rancid-free due to its very low hydroperoxidant content.³¹ This showed that the characteristics of *Moringa oleifera* seed oil obtained were identical to all previous research.¹⁹ Moisture content value obtained was 0.12%, which could be influenced by factors such as climate conditions, growing places, and the processing methods.²⁶ According to Anwar, *et al* (2007) the moisture content of Pakistan *Moringa oleifera* seeds is 5.70%.³² The difference in moisture content between this study and previous findings can be attributed to regional variations in climate, soil conditions, and seed processing techniques. The results also showed that the density of *Moringa oleifera* seed oil was 0.915 g/cm³. According to Barakat (2016), the specific gravity of oil was affected by the molecular weight and components of unsaturation of fatty acid in oil.²⁹ The refractive index obtained in this study was 1.4668, which was used to determine the purity of oil.²⁶ The refractive index of a substance is defined as the ratio between the sine

of the incident angle and the sine of the angle of the refracted light passing through the medium. Refraction is caused by the interaction between electrostatic forces and electromagnetic forces of the atoms in the liquid molecules. Refractive index testing can be used to determine the purity of an oil and can quickly detect hydrogenation. The longer the carbon chain and the more double bonds, the greater the refractive index. The refractive index is also affected by factors such as free fatty acid content, oxidation process, and temperature.³³


Table 2: Physicochemical properties of *Moringa oleifera* seed oil

Properties	Result
Organoleptic	Oil, Yellow, odourless
Acid value (mg KOH/g)	0.46 \pm 0.001
Peroxide value (meq O ₂ /kg)	6.28 \pm 0.008
Density (g/cm ³ ; 25 °C)	0.915 \pm 0.002
Saponification value (mg/KOH/g)	253.5 \pm 1.460
Refractive index	1.4668 \pm 0.0003
Moisture content (% b/b)	0.12 \pm 0.005

Fatty acids analysis of *Moringa oleifera* seed oil using GCMS

The GC-MS analysis result are presented in Figure 1 and Table 3. Based on the results, 37 compounds were identified, including 12 fatty acids. The highest fatty acid was oleic acid, accounting for 71.52% of the total oil, followed by palmitic acid (8.05%), stearic acid (5.99%), behenic acid (5.31%), and arachidic acid (2.97%). These results indicate that the fatty acid composition of *Moringa oleifera* seed oil from Blora is consistent with findings reported in previous studies.¹⁹ Variations in fatty acid composition can be attributed to differences in agroclimatic conditions and *Moringa oleifera* seed varieties. The monounsaturated fatty acid content of *Moringa oleifera* seed oil is similar to that of olive oil.³⁴ In general, the characteristics and fatty acid content of *Moringa oleifera* seed oil obtained by cold pressing are approximately the same when compared to the literature. The slight differences obtained may be due to differences in plant species, climatic factors, and the cultivation locations.⁸

This oil falls into the high oleic oil category, with high-value potential similar to others.³⁵ Oils with high oleic content are particularly valuable due to their superior stability and high nutritional value.³⁶ With a high-quality fatty acid composition, particularly oleic acid (>70%), *Moringa oleifera* seed oil exhibits significant resistance to oxidative degradation.⁵ The oleic acid content in *Moringa oleifera* seed oil has been proven to reduce hair loss and promote hair growth.⁴ A method that can be used to formulate oil actives is nanoemulsion. This preparation is suitable for efficient penetration of active substances into the skin. The active ingredient will easily penetrate the skin due to the large surface area of the emulsion system. In addition, this preparation is easy to use and does not irritate the skin.³⁷

Figure 1: GCMS chromatogram results, (a) FAME standard; (b) *Moringa oleifera* seed oil sample. Note : *Laurate*(Peak 1), *Myristoleate* (peak 2), *Palmitate* (peak 3), *Palmitoleate*(peak 4), *Stearate*(peak 5), *oleate* (peak 6), *Linoleate*(peak 7), *Arachidate*(peak 8,9,10), *Behenate*(peak 11), *Lignocerate*(peak 12).

Table 3: Fatty acid compounds of *Moringa oleifera* seed oil from GCMS analysis

Peak	tR minutes		Area		% Relative Fatty acid		FAME		
	Standard	<i>Moringa oleifera</i> seed oil	Standart	<i>Moringa oleifera</i> oil	seed	Standart	<i>Moringa oleifera</i> seed oil	compound name	Standart
1	1.9331			401565.7		0.97	0		C4
2	2.5327			756983.4		1.83	0	<i>Caproate</i>	C6
3	3.316			1117629		2.7	0	<i>Caprylate</i>	C8
4	4.2938			1464595		3.54	0	<i>Caprate</i>	C10
5	4.942			765736.3		1.85	0		C11
6	5.7685	5.7685		1758716	18282.3	4.25	0.04	<i>Laurate</i>	C12
7	6.8381			906860.3		2.19	0		C13
8	8.2049			2025140	61204.9	4.89	0.14	<i>Myristate</i>	C14
9	8.8207	8.2049		859363.2		2.07	0	<i>Myristoleate</i>	C14:1
10	9.9227			1004700		2.43	0		C15
11	10.6682			894107		2.16	0		C15:1
12	11.9809	11.9755		3412276	3545357	8.24	8.05	<i>Palmitate</i>	C16
13	12.5751	12.5751		902465.3	562653	2.18	1.28	<i>Palmitoleate</i>	C16:1
14	14.3524			1003786		2.42	0	<i>Margarate</i>	C17
15	15.0168			895742.1		2.16	0		C17:1
16	16.9778	16.9886		2148697	2640036	5.19	5.99	<i>Stearate</i>	C18
17	17.2857			952284.8		2.3	0	<i>eladiate</i>	C18:1 (n9)
18	17.4964	17.5342		2300275	3.2E+07	5.55	71.52	<i>oleate</i>	C18:1 (n9)
19	18.204			766174		1.85	0	<i>Linolelaidate</i>	C18:2 (n6)
20	18.7496	18.7496		848129.5	627630	2.05	1.42	<i>Linoleate</i>	C18:2 (n6)
21	19.4573			789900.4		1.91	0		C18:3 (n6)
22	20.4189	20.4134		752851.8	451855	1.82	1.03		C18:3 (n3)
23	22.7147	22.7147		2097494	1307879	5.06	2.97	<i>Arachidate</i>	C20

24	23.2712	23.2712	826683.7	724887	2	1.65		C20:1 (n9)
25	24.6487		694866.5		1.68	0		C20:2 (n6)
26	25.3617		678773.8		1.64	0		C20:3 (n6)
27	25.6264		700517.3		1.69	0		C21
28	25.7561		1070832		2.59	0	Arachidonate	C20:4 (n6)
29	26.3881		720133.1		1.74	0		C20:3 (n3)
30	27.5442		717156.5		1.73	0	EPA	C20:5 (n3)
31	28.549	28.549	1955556	2339764	4.72	5.31	Behenate	C22
32	29.1702		761721.9		1.84	0	Erucate	C22:1 (n9)
33	30.6774		694237.9		1.68	0		C22:2 (n6)
34	31.7091		837697.8		2.02	0		C23
35	35.1286		569785.4		1.38	0	DHA	C22:6 (n3)
36	35.5068	35.4905	1676772	269402	4.05	0.61	Lignocerate	C24
37	36.3009		691063.3		1.67	0	Nervorate	C24:1 (n9)

Optimization of *Moringa oleifera* seed oil nanoemulsion

Nanoemulsion preparation consisted of 14 run formulas with different concentrations of *Moringa oleifera* seed oil, Tween 80, and PEG 400, (Table 4). The result of 14 runs showed that all *Moringa oleifera* seed oil nanoemulsion formulations showed a slightly thick consistency and a clear yellowish color. However, runs 1,2,4,10,12 showed turbidity while the remaining appeared transparent (see Figure 2). The response variables in this study included particle size, PDI value, and zeta

potential. Based on the results of the evaluation test, some nanoemulsions exhibited a clear yellow (transparent) appearance, and some formulations developed turbidity. The particle size across the 14 runs ranged from 13.01 to 442.3 nm. The parameter was significantly influenced by the concentration of surfactant, as higher surfactant levels were associated with smaller particle sizes.³⁸

Figure 2: Run Formula of *Moringa oleifera* seed oil nanoemulsion

The PDI value, which significantly influences characteristics of nanoemulsion stability, across runs 1 to 14 ranged from 0.2233 to 0.6043.³⁹ The range of PDI values is usually between 0-1. PDI serves as a measure of system uniformity, a low PDI value indicates a more uniform particle distribution in a monodisperse system.⁴¹ When the value is close to zero, the particle distribution is more homogeneous. Meanwhile, values above 0.5 indicate increasing heterogeneity.⁴² Higher heterogeneity can lead to increased particle agglomeration due

to collisions between particles.⁴³ PDI is calculated as the ratio of the standard deviation to the mean droplet size⁴⁴. In this study, the zeta potential value obtained was between -31.02 to -15.08. Zeta potential is used to determine the surface charge of nanoemulsion droplets.⁴⁵ The results of this evaluation show homogeneity, and size distribution of the nanoemulsion preparation.¹⁴ The physical characteristics of *Moringa oleifera* seed oil nanoemulsion are presented in Table 4.

Table 4: *Moringa oleifera* seed oil nanoemulsion run formula and their evaluation results

Run	Formulation ingredient (%)				Response parameters			Zeta potential (mV)
	Oil	Tween 80	PEG 400	Aquadest	Particle size (nm)	PDI		
R1	9	36	16	39	442.2	0.2586	-16.61	
R2	7	36	18	39	361.6	0.3682	-17.43	
R3	5	36	20	39	14.23	0.6043	-24.26	
R4	7.67	36.67	16.67	38.99	374.4	0.3073	-15.49	
R5	7	38	16	39	207.5	0.5213	-16.79	
R6	5.67	36.67	18.67	38.99	26.94	0.6002	-17.29	
R7	5	40	16	39	13.01	0.4455	-18.81	
R8	5	36	20	39	169.7	0.5929	-29.08	
R9	5	38	18	39	13.57	0.5813	-31.02	
R10	9	36	16	39	442.3	0.2233	-18.94	
R11	5	40	16	39	20.31	0.3161	-15.08	
R12	7	38	16	39	160.2	0.5224	-20.06	
R13	5.67	38.67	16.67	38.99	15.37	0.5946	-22.55	
R14	6.33	37.33	17.33	39.01	16.47	0.5206	-20.28	

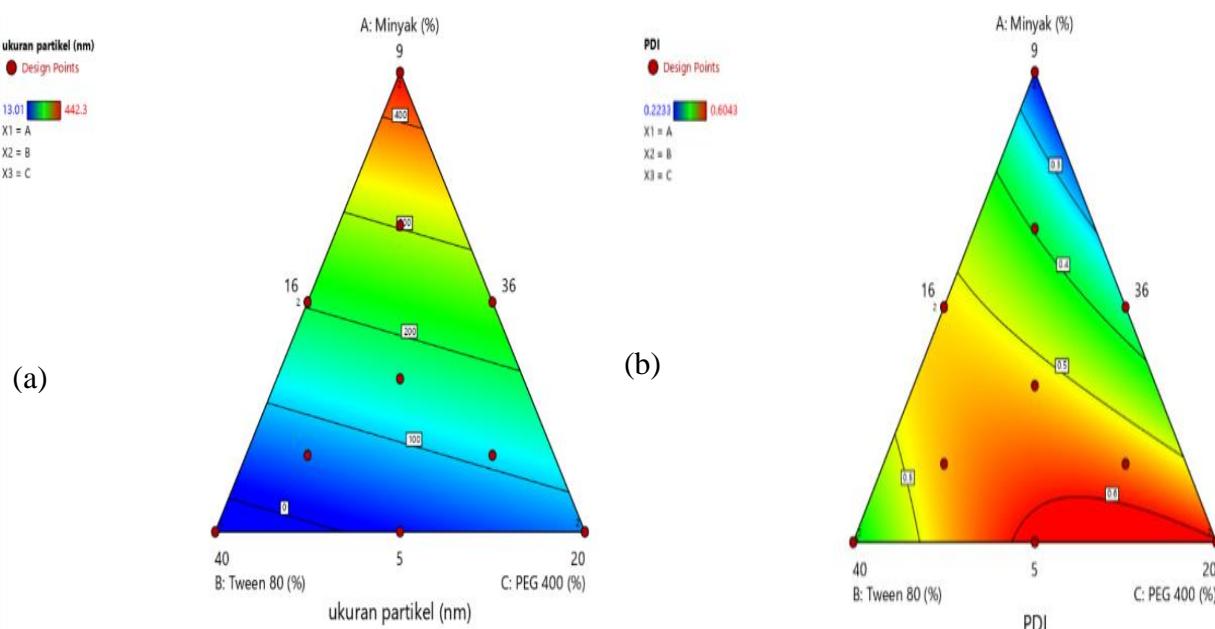
Verification of the optimal formula of *Moringa oleifera* seed oil nanoemulsion

The concentration of oil, surfactant, and cosurfactant, as well as their interactions, significantly influenced the characteristics of

nanoemulsion. This influence was represented by coefficients, where a positive value (+) indicated a direct proportional relationship meaning that higher concentrations resulted in greater response values. Conversely, a negative coefficient (-) signified an inverse relationship, where an increase in concentration led to a decrease in the response.⁴⁶

High amounts of surfactant can have toxic effects when used in food or other products.⁴² In this study, Tween 80 was used as surfactant due to its low irritation and toxicity, high stability, and small molecules, thereby minimizing the size of nanoemulsion droplets.⁴⁷ The cosurfactant, PEG 400 was also used to increase the stability and improve drug absorption.¹⁷ As presented in Table 5, the statistical analysis results revealed that the selected models for response variables were linear for particle size, and were quadratic for PDI, and linear for zeta potential. Additionally, *Moringa oleifera* seed oil, Tween 80, and PEG 400 had a significant effect among all formulas ($p < 0.05$). Figure 3 illustrates the composition of *Moringa oleifera* seed oil, Tween 80, and PEG 400 in modeling. The diagram indicates that the highest response values are represented in the red area, while lower values appear in the yellow area.

The mixture of *Moringa oleifera* seed oil, Tween 80, and PEG 400 affected particle size. *Moringa oleifera* seed oil and PEG 400 have a positive effect on particle size. Meanwhile, Tween 80 had a negative effect on particle size with a coefficient value of -17.17. As shown in Figure 3a, the blue areas represent smaller nanoemulsion particle sizes, while the color transition from green to yellow and red indicates increasing particle size. This suggests that higher concentrations of Tween 80 result in smaller nanoemulsion particles. Previous studies had shown that Tween 80 could produce smaller droplet sizes in emulsion.⁴⁸ As a surfactant, Tween 80 consists of both hydrophobic and hydrophilic components, allowing it to bridge the oil and water phases by reducing


interfacial tension. This reduction in interfacial tension decreases the free energy required for nanoemulsion formation.⁴⁹ The combination of the three materials influenced the PDI value. The quadratic model on PDI showed that *Moringa oleifera* seed oil and Tween had a negative effect, while PEG 400 had a positive effect on the PDI value. As illustrated in Figure 3b, areas with a red color gradient correspond to higher PDI values due to the PEG 400 component, while blue areas indicate lower PDI values associated with *Moringa oleifera* seed oil and Tween 80. This showed that greater amount of *Moringa oleifera* seed oil and Tween can reduce the PDI value of nanoemulsion. Yang *et al* (2023) showed that increasing the concentration of Tween 80 can reduce the droplet size of nanoemulsions. Tween 80 lowers the oil-water interfacial tension, reducing the energy required to break emulsion droplets and thereby decreasing their diameter. However, this also leads to a significant increase in the PDI value of the nanoemulsion. Larger droplet sizes tend to aggregate, resulting in flocculation and phase separation.⁵⁰

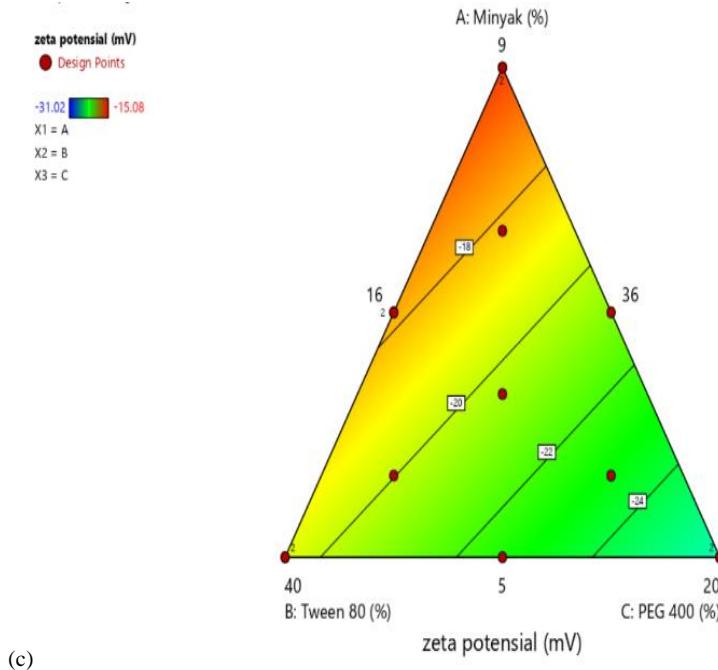

The results of the zeta potential analysis revealed a significant effect. PEG 400 had the greatest impact on reducing the zeta potential, with a coefficient value of -1.57. In contrast, *Moringa oleifera* seed oil and Tween 80 increased the zeta potential value. As illustrated in Figure 3c, PEG 400 is represented in green, indicating a decrease in zeta potential, whereas *Moringa oleifera* seed oil and Tween 80 are shown in yellow and red, signifying higher zeta potential values. Miksusanti *et al* (2023) reported that a zeta potential value of more than +30 mV or less than -30 mV will produce a relatively stable dosage form.¹⁴ Therefore, the negative value obtained in this study suggests that nanoemulsion had a negative charge and was capable of resting repulsive forces to produce a stable preparation.²²

Table 5: Results of ANOVA statistical analysis of nanoemulsion characteristics

Characteristic	Mathematics Equation	Mathematics models	Anova model (p value)
Particle size	+103.29 (A) - 17.17 (B) +8.44(C)	linear	<0.0001
PDI	-1.27 (A) - 0.32 (B) +0.52 (C) + 0.05 (A)(B) -0.015 (A)(C) +0.03 (B)(C)	quadratic	0.0007
Zeta potential	+0.89 (A) +0.02 (B) -1.57 (C)	linear	0.0477

Note : A: Oil; B: Tween 80; C: PEG 400

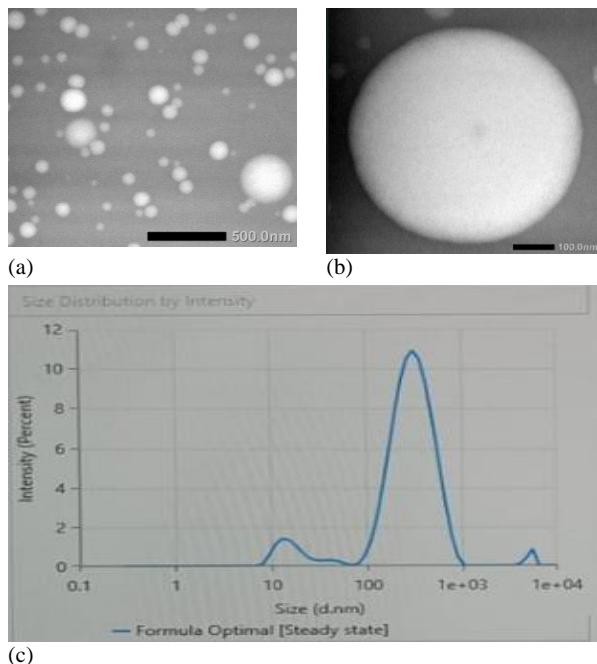
Figure 3: Counter plot model of *Moringa oleifera* seed oil nanoemulsion response, representing (a) particle size, (b) PDI, (c) zeta potential

The solution with the highest desirability value was close to 1.0. Based on the results obtained using Design Expert version 13, the desirability value was 0.761, indicating an optimal formulation that met the desired physical characteristics. The optimal formula consisted of 6.401% *Moringa oleifera* seed oil, 36% Tween 80, and 18.599% PEG 400. The measurement results of the optimal formula showed a particle size of 237.06 nm, and PDI value of 0.4672. These values align with the specified criteria, as nanoemulsion particle sizes typically range from 10 to 1000 nm.⁵¹ In general, smaller particle sizes increase surface area, thereby enhancing drug absorption. Additionally, the nanoscale formulation reduces emulsification time.¹¹ The PDI value indicates that nanoemulsion particles are stable and can reduce the occurrence of precipitation.

In this study, the PDI value of *Moringa oleifera* seed oil nanoemulsion preparation met nanoemulsion the criteria. A smaller PDI value indicates a narrower distribution, leading to a more uniform particle size.²⁵ The zeta potential value of *Moringa oleifera* seed oil nanoemulsion was found to be -20.89. Additionally, the transmittance percentage of the optimum formula was close to 100%, indicating excellent optical clarity. A higher transmittance percentage is generally associated with smaller nanoemulsion particle sizes.⁵² Transmittance values can be used to quantitatively assess nanoemulsion stability, homogeneity, and optical clarity.⁵³ Compared to the results, the predicted value obtained from the design expert version 13 showed a

confidence level of 95%. The complete data on the optimal formula test are presented in Table 6.

Based on the TEM results, utilizing bar scales of 100 nm and 500 nm, the droplets in nanoemulsion form spherical globules (Figure 4). This electron microscope provides high-resolution imaging, enabling the detailed visualization of microstructures and structural transitions within the nanoemulsion.¹⁴ The complete TEM results obtained in this study are shown in Figure 4. Furthermore, based on Table 7, the particle size, PDI, and zetapotential of the optimum formula observation results did not show significant differences from the software-predicted values ($p > 0.05$). This shows that the results obtained from the test were valid.


Table 6: Results of the optimal formula test of *Moringa oleifera* seed oil nanoemulsion

Response Parameters	Result
Organoleptic	liquid, transparent yellow, odourless
Particle size (nm)	237.06 ± 35.39
PDI	0.467 ± 0.080
Zeta potential (mV)	-20.89 ± 2.961
Transmittance (%)	97.7 ± 0.265

Data represent the mean \pm standard deviation (SD and n = 5).

Table 7: Results of one sample T-Test prediction and optimal formula test results

Parameters	Prediction	Result	p value	Significance
Particle size (nm)	200	237.06	0.079	Not significant
PDI	0.416	0.467	0.227	Not significant
Zeta potential (mV)	-22.421	-20.89	0.186	Not significant

Figure 4: Particle size distribution and morphology of nanoemulsion (a) 10.000 times (Scale bar 500 nm); (b) 40.000 times magnification (Scale bar 100 nm); (c) particle size distribution of nanoemulsion

Conclusion

This study demonstrated that *Moringa oleifera* seed oil contains 12 types of fatty acid, with oleic being the most abundant (71.52%), followed by palmitic (8.05%), stearic (5.99%), behenic (5.31%), and arachidic (2.97%). The concentration of *Moringa oleifera* seed oil, Tween 80, and PEG 400 significantly affect the characteristics of nanoemulsion such as particle size, PDI value, and zeta potential. The results indicate that the optimal formulation consisted of 6.401% *Moringa oleifera* seed oil, 36% Tween 80, and 18.599% PEG 400. This study further highlights the potential application of *Moringa oleifera* seed oil as a high-quality, oleic acid-rich oil in nanoemulsion preparations, which may serve as a promising dosage form for hair growth treatments.

Conflict of Interest

The authors declare no conflicts of interest.

Authors' Declaration

The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgments

The author is grateful to the Gadjah Mada University Yogyakarta for the support. Grateful to the Indonesian Education Scholarship (BPI), Center for Higher Education Funding and Assessment, Indonesia Endowment Fund for Education (LPDP) by number 0606/J5.1/LP.01.01/2023

Funding

Final Project Recognition by Indonesian Education Scholarship (BPI), Center for Higher Education Funding and Assessment, Indonesia Endowment Fund for Education (LPDP) number 0606/J5.1/LP.01.01/2023.

References

1. Mishra P, Handa M, Ujjwal RR, Singh V, Kesharwani P, Shukla R. Potential of nanoparticulate based delivery systems for effective management of alopecia. *Colloids Surf B Biointerfaces* [Internet]. 2021;208:112050. Available from: <https://doi.org/10.1016/j.colsurfb.2021.112050>
2. Mingsan M, Mengfan P, Dandan L, Zhengwang Z. Effects of AiQingHua oil on microcirculation disturbance and alopecia mice model. *J King Saud Univ - Sci* [Internet]. 2020;32(6):2669–2674. Available from: <https://doi.org/10.1016/j.jksus.2020.03.023>
3. Rizg WY, Hosny KM, Elgebaly SS, Alamoudi AJ, Felimban RI, Tayeb HH, Alharbi M, Bukhary HA, Abualsunum A, Almehmady AM, Khallaf RA.. Preparation and optimization of garlic oil/apple cider vinegar nanoemulsion loaded with minoxidil to treat alopecia. *Pharmaceutics*. 2021;13(12):1–14. <https://doi.org/10.3390/pharmaceutics13122150>
4. Korassa YB, Saptarini NM, Mustariche R, Hendriani R, Ola ARB, Novicadlitha Y. Anti-Alopecia Activity of *Moringa Oleifera* Lamk. Seed Oil Against Dihydrotestosterone-Induced Rabbits. *Int J Appl Pharm*. 2023;15(Special Issue 2):19–24. Doi : 10.22159/ijap.2023.v15s2.04.
5. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, Genetics, Ethnopharmacology, Phytochemistry and Pharmacology of *Moringa oleifera* Leaves: *Int J Mol Sci*. 2015;16:12791–12835. Doi : doi: <https://doi.org/10.3390/ijms160612791>.
6. Junlatat J, Sripanidkulchai B. *Moringa oleifera* seed oil promotes hair growth in mice and modulates the genetic expressions of factors affecting hair growth cycle in skin cell culture. *Songklanakarin J Sci Technol*. 2022;44(3):817–825.
7. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. *Moringa oleifera* seeds and oil: Characteristics and uses for human health. *Int J Mol Sci*. 2016;17(12):1–14. Doi : 10.3390/ijms17122141.
8. Özcan MM, Ghafoor K, Al Juhaimi F, Ahmed IAM, Babiker EE. Effect of cold-press and soxhlet extraction on fatty acids, tocopherols and sterol contents of the *Moringa oleifera* seed oils. *S Afr J Bot*. 2019;124:333–337. Doi : 10.1016/j.sajb.2019.05.010.
9. Debnath S, Kumar GV, Satyanarayanaand. Nanoemulsion a method to improve the solubility of lipophilic drugs Nanoemulsion-A Method To Improve The Solubility Of Lipophilic Drugs. *An Int J of Advances In Pharm Sci*. 2017; 2(2):72–83.
10. Singh S, Sonia, Sindhu RK, Alsayegh AA, Batiha GES, Alotaibi SS, Albogami S, Conte CA. Formulation Development and Investigations on Therapeutic Potential of Nanogel from *Beta vulgaris* L. Extract in Testosterone-Induced Alopecia. *Biomed Res Int*. 2023;(2023):1–17.
11. Bhatt P, Madhav S. A detailed review on oral mucosal drug delivery system. *Int J Pharm Sci Res*. 2011;2(10):2482–2489.
12. Reubun YTA, Pangalila AA. Combination of Candlenut Oil (*Aleurites mollucana* L.) and Celery Leaf Powder (*Apium graveolens* L.) nanoemulsion on Alopecia Disease Model. *J Farm Indones*. 2023;20(1):46–53.
13. Thanida Chuacharoen SP and CMS. Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. *Molecules*. 2020;24(15):2744. doi:10.3390/molecules24152744.
14. Miksusanti, Apriani EF, Bihurin AH B. Optimization of Tween 80 and PEG-400 Concentration in Indonesian Virgin Coconut Oil Nanoemulsion as Antibacterial against *Staphylococcus aureus*. *Sains Malays*. 2023;52(4):1259–1272.
15. Nita T, Julia R, Jansen S. Formulation and Evaluation Of *Moringa oleifera* Seed Oil Nanoemulsion Gel. *Asian J Pharm Res Dev*. 2020;7(6):1–5.
16. Rianganapatee P, Khongkow M, Treetong A, Unger O, Phungbun C, Jaemsai S, Bootsiri C, Okonogi S. Development of Tea Seed Oil Nanostructured Lipid Carriers and In Vitro Studies on Their Applications in Inducing Human Hair Growth. *Pharmaceutics*. 2022;14(5): 984. DOI: 10.3390/pharmaceutics14050984.
17. Chen YS, Chiu YH, Li YS, Lin EY, Hsieh DK, Lee CH. Integration of PEG 400 into a self-nanoemulsifying drug

delivery system improves drug loading capacity and nasal mucosa permeability and prolongs the survival of rats with malignant brain tumors. *Int J Nanomedicine*. 2020;14:3601–3613. DOI: 10.2147/IJN.S193617.

18. Rowe, R. C., Sheskey, P. J., dan Owen SC. *Handbook of Pharmaceutical Excipients*. Ed V. Pharmaceutical Press and American Pharmacists Association.; 2006.
19. Gharsallah K, Rezig L, B'chir F, Bourgou S, Achour N Ben, Jlassi C, Soltani T, Chalh A. Composition and Characterization of Cold Pressed *Moringa oleifera* Seed Oil. *J Oleo Sci*. 2022;71(9):1263–1273. DOI : 10.5650/jos.es22095.
20. Ogunsina BS, Indira TN, Bhatnagar AS, Radha C, Debnath S, Gopala Krishna AG. Quality characteristics and stability of *Moringa oleifera* seed oil of Indian origin. *J Food Sci Technol*. 2020;51(3):503–510. DOI 10.1007/s13197-011-0519-5.
21. Nafisah U, Wikantyasnig ER, Sukmawati A. Optimization of Nanostructured Lipid Carriers for Essential Oil of Artemisia herba-alba. *Trop J Nat Prod Res*. 2025;8(12):9578–9585. DOI: 10.26538/tjnpr/v8i12.33.
22. Salmannejad F, Qorab H, Ghari T. Formulation, Characterization and Optimization of Peel-Off Gel of Soybean Extract as a Face Mask. *Trop J Nat Prod Res*. 2024;8(3):6544–6551. doi: 10.26538/tjnpr/v8i3.11. The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams
23. Thakkar H, Nangesh J, Parmar M, Patel D. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system. *J Pharm Bioallied Sci*. 2011;3(3):442–448.
24. Rohmah A, Prabowo HA, Setiasihi S, Handayani S, Jufri M, Hudiyono S. The evaluation of activity and stability of isolated bromelain from pineapple cores (*Ananas comosus* [L.] Merr) and in vitro penetration test of nanoemulsion topical base. *Int J Appl Pharm*. 2021;13(5):336–342. DOI : 10.22159/ijap.2021v13i5.41769.
25. Gohel M, Purohit A, Patel A, Hingorani L. Optimization of bacoside a loaded snedds using d-optimal mixture design for enhancement insolubility and bioavailability. *Int J Pharm Pharm Sci*. 2016;8(12):213–220. DOI: 10.22159/ijpps.2016v8i12.13488.
26. Widyanastuti NA, Susilo B. Study of Hydraulic Press Extraction of *Moringa oleifera* Seed Oil (*Moringa oleifera*) with Variation of Heat Treatment. *J Bioproses Komod Trop*. 2021;1(2):48–55.
27. Rahman IR, Kartikasari D, Kurnianto E, Herdaningsih S. Antioxidant Screening and Sunscreen Activity of Nanocream of Purified Extract of Kenikir Leaves (ETDK) and Tampoi Fruit Peel Extract (EKBT). *J Farm Galen (Galenika J Pharmacy)*. 2021;7(3):231–237. DOI: 10.22487/j24428744.2021.v7.i3.15663.
28. Okonkwo TJN, Obonga WO, Okonkwo CJO. Fatty acid profile and physicochemical properties of *Landolphia owariensis* P. beauvois stringy seed oil. *Trop J Pharm Res*. 2020;13(8):1347–1352. DOI: 10.4314/tjpr.v13i8.21.
29. Barakat H, Ghazal GA. Physicochemical Properties of *Moringa oleifera*; Seeds and Their Edible Oil Cultivated at Different Regions in Egypt. *Food Nutr Sci*. 2016;07(06):472–484. DOI: 10.4236/fns.2016.76049.
30. Fu X, Su J, Hou L, Zhu P, Hou Y, Zhang K, Li H, Liu X, Jia C, Xu J. Physicochemical and thermal characteristics of *Moringa oleifera* seed oil. *Adv Compos Hybrid Mater*. 2021;4(3):685–695. DOI: 10.1007/s42114-021-00302-4.
31. Nebolisa NM, Umeyor CE, Ekpunobi UE, Umeyor IC, Okoye FB. Profiling the effects of microwave-assisted and soxhlet extraction techniques on the physicochemical attributes of *Moringa oleifera* seed oil and proteins. *Oil Crop Sci*. 2023;8(1):16–26. DOI: 10.1016/j.ocsci.2023.02.003.
32. Anwar F, Latif S, Ashraf M, Gilani AH. *Moringa oleifera*: a food plant with multiple medicinal uses. *Phyther Res*. 2023;21(1):17–25.
33. Timilsena YP, Vongsvivut J, Adhikari R, Adhikari B. Physicochemical and thermal characteristics of *Australian chia* seed oil. *Food Chem*. 2020;228:394–402. DOI: 10.1016/j.foodchem.2020.02.021.
34. Schwingshakel L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies. *Lipids Health Dis*. 2020;13(1): 154. DOI : 10.1186/1476-511X-13-154.
35. Anwar F, Rashid U. Physico-chemical characteristics of *Moringa oleifera* seeds and seed oil from a wild provenance of Pakistan. *Pak J Bot*. 2007;39(5):1443–1453.
36. Rahman IMM, Barua S, Nazimuddin M, Begum ZA, Rahman AM, Hasegawa H. Physicochemical properties of *Moringa oleifera* Lam. seed oil of the indigenous-cultivar of Bangladesh. *J Food Lipids*. 2009;16(4):540–553. DOI : 10.1111/j.1745-4522.2009.01165.x.
37. Lasanudin RI, Bachri MS, Wahyuningsih I, Efiana NA. Nanoemulsion Formulation Combination of *Virgin Coconut Oil* (VCO) and *Candlenut Oil* (*Alleurites mollucanus*) for Hair Growth in Male White Rats (*Rattus norvegicus*). *Pharmacon: J Farm Indones*. 2024;21(1):59–67. DOI : 10.23917/pharmacon.v21i1.4348.
38. Schreiner TB, Santamaria-Echart A, Ribeiro A, Peres AM, Dias MM, Pinho SP, Barreiro MF. Formulation and optimization of nanoemulsions using the natural surfactant saponin from Quillaja bark. *Molecules*. 2020;25(7) :1538. DOI: 10.3390/molecules25071538
39. Pandya BR, Chotai NP, Suthar RM, Patel HK. Formulation, in-vitro evaluation and optimization of nanoemulsion of raloxifene hydrochloride. *Int J Pharm Res*. 2017;9(2):38–48.
40. Danaei M, Dehghankhord M, Ateai S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozaari M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. *Pharmaceutics*. 2020;10(2):1–17. DOI: 10.3390/pharmaceutics10020057.
41. Monika, Sharma S, Shrivastva M, Kumar S, Rabbani SA, Garg A. Novel In-Situ NanoEmulGel (NEG) of Azithromycin with Eugenol for the Treatment of Periodontitis: Formulation Development and Characterization. *J Clust Sci*. 2022;33(6):2589–2600. DOI: 10.1007/s10876-021-02172-8.
42. Pongsupun P, Iwamoto S, Siripatrawan U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. *Ultrason Sonochem*. 2020;60:104604. DOI: 10.1016/j.ultrsonch.2020.05.021.
43. Seeram KJ, Nidhin M, Indumathy R, Nair BU. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. *Bull Mater Sci*. 2008;31(1):93–96. DOI: 10.1007/s12034-008-0016-2.
44. Abdullah TM, Al-Kinani KK. Topical Propranolol Hydrochloride Nanoemulsion: A Promising Approach Drug Delivery for Infantile Hemangiomas. *Iraqi J Pharm Sci*. 2023;32:300–315. DOI : 10.31351/vol32issSuppl.pp300-315.
45. Indrati O, Martien R, Rohman A, Nugroho AK. Application of simplex lattice design on the optimization of andrographolide self nanoemulsifying drug delivery system (SNEDDS). *Indones J Pharm*. 2020;31(2):124–30. DOI : 10.14499/indonesianjpharm31iss2pp124.
46. Apriani EF, Mardiyanto M, Hendrawan A. Optimization of Green Synthesis of Silver Nanoparticles From *Areca catechu* L. Seed Extract With Variations of Silver Nitrate and Extract Concentrations Using Simplex Lattice Design Method. *Farmacia*. 2022;70(5):917–924.
47. Ghosh V, Mukherjee A, Chandrasekaran N. Colloids and Surfaces B : Biointerfaces Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. *Colloids Surf B Biointerfaces*. 2021;114:392–397. DOI: 10.1016/j.colsurfb.2020.10.034.
48. Koocheki A, Kadkhodaei R. Effect of *Alyssum homolocarpum* seed gum, Tween 80 and NaCl on droplets characteristics, flow properties and physical stability of ultrasonically prepared corn oil-in-water emulsions. *Food Hydrocoll*. 2021;25(5):1149–1157.
49. Chuesiang P, Siripatrawan U, Sanguandeekul R, McLandborough L, Julian McClements D. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. *J Colloid Interface Sci*. 2020;514:208–216. DOI: 10.1016/j.jcis.2019.11.084.
50. Yang T, Liu C, Zheng Y, Liu TC, Li K, Liu J, Liu Y, Zhou P. Effect of WPI/Tween 80 mixed emulsifiers on physicochemical

stability of ginsenosides nanoemulsions. *Food Biosci.* 2023;53:102519. DOI: 10.1016/j.fbio.2023.102519.

51. Arian LW, Zulkarnain AK, Hertiani T, Nurrochmad A. Optimization of Nanostructured Lipid Carriers (NLC) Extract Crude Fucoidan Algae. *Trop J Nat Prod Res.* 2024;8(12):9610–9618. DOI: 10.26538/tjnpr/v8i12.38.

52. Kotta S, Khan AW, Ansari SH, Sharma RK, Ali J. Formulation of nanoemulsion: A comparison between phase inversion composition method and high-pressure homogenization method. *Drug Deliv.* 2015;22(4):455–466. DOI : 10.3109/10717544.2013.866992.

53. Abbas IK, Abd-AlHammid SN. Design, Optimization and Characterization of Self-Nanoemulsifying Drug Delivery Systems of Bilastine. *Iraqi J Pharm Sci.* 2023;32(7):164–176. DOI: 10.31351/vol32issSuppl.pp164-176.