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Introduction  

Endometrial carcinoma (EC) is one of the three common 

malignancies in the female reproductive tract.1 There are two main 

types of EC: type I is oestrogen-dependent and accounts for about 

80% to 85% of cases;2 type Ⅱ is non-oestrogen-dependent and mostly 

occurs in the atrophic endometrium, with poorly differentiated 

morphology. Nearly 75% of EC patients are menopausal women; 

however, EC has started to show a trend of increasing incidence at a 

younger age.1 In general, the main treatment of EC is hysterectomy 

with adjuvant therapy, including radiotherapy, chemotherapy and 

endocrine therapy. Hysterectomies have some potential risks, 

especially for younger patients, such as sterilization, higher risk of 

congestive heart failure, coronary artery disease and neuropathy.3 

Thus, instead of hysterectomy, alternative therapies, such as 

chemotherapy, have become more popular for young patients. The 

main chemotherapy drugs are cisplatin, carboplatin, doxorubicin and 

paclitaxel.4 

Chemotherapy drugs have significant effects in the treatment of EC, 

but the side effects are generally severe and involve multiple systems, 

such as the integumentary system, digestive system and circulatory 

system.4 Symptoms include chills, high fever, anaphylactic shock, 

dizziness, nausea and vomiting, abdominal pain, diarrhoea, skin rash, 

itching, hand-foot syndrome, cardiotoxicity, phlebitis, high blood 

pressure, dyspnoea, chest tightness, bone marrow suppression, etc.4  
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These adverse reactions seriously affect the patient's quality of life and 

long-term treatment compliance.5 Thus, scientists have been seeking 

methods to reduce these adverse effects. Studies have confirmed that 

the combined use of certain herbal medicines and chemotherapeutics 

can effectively reduce the required dose of the chemotherapeutics and 

thus reduce their adverse effects.6,7 Combined use may also reduce the 

chance of metastasis and recurrence, and improve immunity.8 Various 

pharmacological mechanisms of herbal medicines for cancer treatment 

have been found. They may damage the DNA of cancer cells, block 

the cell cycle, inhibit tumour angiogenesis, inhibit tumour cell 

autophagy and cause cancer cell apoptosis. 8  

Hedyotis diffusa Willd (HDW) is one of the herbal medicines that has 

been clinically used to treat cancers in China.9 Apart from its anti-

tumour effects, HDW also has anti-bacterial, anti-inflammatory and 

immune-enhancing properties.10 These properties are produced by 

different phytochemicals of HDW. The anti-tumour effects of HDW 

are mainly caused by flavonoids, anthraquinones, terpenes, sterols, 

polysaccharides, organic acids, alkaloids and volatile oils.11 HDW can 

prevent the formation of cancer cells, inhibit cancer cell growth and 

prevent metastasis through a variety of pharmacological mechanisms, 

including the regulation of the immune system, inhibition of tumour 

angiogenesis and lymphangiogenesis, inducing tumour cell apoptosis, 

regulating cancer-related signal pathways and anti-oxidation.12–14 

Studies have revealed that the use of HDW with chemotherapy agents 

may help to reduce toxicity and increase the efficacy of chemotherapy, 

thus improving the quality of life of the patient.15,16 HDW can inhibit 

the growth of cervical cancer, ovarian cancer, stomach cancer, breast 

cancer, colon cancer, liver cancer, leukaemia and lung cancer.17,18 

However, no studies could be found on its effects on EC.  

In silico studies have been performed to identify the phytochemicals 

of HDW and their corresponding anti-tumour targets. For example, 

Song et al. found that 14 compounds of HDW can inhibit or induce 

various anti-prostate cancer-related targets, including IL1B 

(Interleukin-1 Beta), IL6 (Interleukin 6), CREB1 (CAMP Responsive 

Element Binding Protein 1), VEGFA (Vascular Endothelial Growth 

Factor A), MAPK8 (Mitogen-activated Protein Kinase 8) and more.19 

Liu et al. found that the anti-colorectal cancer effects of HDW were 

caused by affecting the PIK3CA (Phosphatidylinositol-4,5-
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Bisphosphate 3-Kinase Catalytic Subunit Alpha), GSK3B (Glycogen 

synthase kinase 3 beta) and AKT1 (AKT serine/threonine kinase 1) 

targets, among others.20 Some of these targets, such as VEGFA, 

PIK3CA and AKT1, were considered as clinical actionable molecular 

targets of EC.21 Thus, we believe the phytochemicals of HDW can also 

inhibit the growth of EC.  

A3 adenosine receptors (A3ARs) are a recently identified target for 

EC.22 One of the popular phytochemicals that has been proven to 

induce the activities of A3ARs and produce anti-cancer effects is 

cordycepin.23 This is a phytochemical of Cordyceps sinensis and has 

been used clinically as an anti-inflammatory and anti-cancer agent in 

traditional Chinese medicine (TCM).24 Stimulation of A3ARs can 

interrupt different tumour cell proliferation pathways, including that of 

PKA (cAMP-activated protein kinases), MAPK (mitogen-activated 

protein kinase), VEGF (vascular endothelial growth factor) and 

more.25 Activation of A3ARs can also reduce the activities of 

telomerase, which is an important factor in cancer metastasis.26 Thus, 

we believe the identification of the phytochemicals that can affect 

A3ARs can help to develop an EC treatment.  

This study investigated the effects of clinically approved HDW 

injection in EC cells using cytotoxicity MTT assays and flow 

cytometry. After confirming the in vitro anti-EC properties of HDW, in 

silico methods were used to predict the active phytochemicals of the 

HDW injection that have a high binding affinity with A3ARs and have 

favourable pharmacological and pharmacokinetic properties.  

 

Materials and Methods 

Cell Culture 

An Ishikawa cell line (ATCC, Manassas, VA, USA) was cultured in a 

humidified 5% CO2 atmosphere at 37°C in RPMI-1640 (Gibco, 11875, 

Waltham, MA) supplemented with 10% foetal bovine serum (Gibco, 

16000044).  

 

Cytotoxic Assay 

An MTT (tetrazolium) assay was used to assess the cytotoxic activity 

of the HDW injection and cell viability. The MTT assays were 

performed on 4×103 Ishikawa cells seeded in 96-well plates exposed 

to different concentrations of cisplatin (P4394; Sigma-Aldrich), HDW 

injection (Z34020595, Keyuan Pharmaceutical Industry, China) and 

their combination (Table 1) for 24 hours. Cisplatin and a blank group 

were used as the positive and negative control group, respectively. 

Phosphate buffer saline (PBS) was used to wash the cells after 

exposure. MTT (1 mg/mL) solutions were then added to the cells for 4 

hours incubation at 37°C in a humidified 5% CO2 atmosphere. After 

incubation, the culture media was removed, 150 μL of DMSO (D4540; 

Sigma-Aldrich) was added and the solution was shaken for 15 minutes 

to dissolve the formazan crystals. A microplate reader (SPECTROstar 

Nano; Ortenberg, Allmendgrün, Germany) was used to measure the 

optical density (OD) of the solution at 550 nm. The percentage of 

viability and inhibition was calculated using the following equations:27 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑂𝐷

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑂𝐷
× 100% 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 100 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

 

Apoptosis detection  

Apoptosis was detected using flow cytometry upon staining the cells 

with annexin V-fluorescein isothiocyanate (FITC)/propidium iodide 

(PI). The experimental protocol started by seeding 1 × 106 Ishikawa 

cells in 35-mm culture dishes for 1 night. Different concentrations of 

cisplatin, HDW injection and their combination were added to the 

cells and left for 24 hours. The cells were harvested, resuspended, 

washed with PBS and centrifuged for 3 minutes. Then, 500 μL of the 

binding buffer of the apoptosis kit (556547; BD Biosciences, San 

Diego, CA, USA) was used to resuspend the cells, followed by the 

addition of 5 μL of PI and 5 μL of annexin V-FITC to 100 μL. The cell 

suspension was left at room temperature for 15 minutes for staining. 

Cellular apoptosis was then analysed using an Applied Biosystems 

Attune flow cytometer (Waltham, MA).  

In silico molecular docking 

Molecular docking simulations can predict the binding modes and 

affinities between protein-ligand interactions. This technique has been 

used in various drug development studies to identify chemicals that 

can bind to a target protein for pharmacological activity.28 Here, 

molecular docking was used to predict the active phytochemicals of 

HDW that may have anti-EC effects through binding to the A3ARs. 

Overall, 76 phytochemicals of HDW were found from the 

literature.11,13,17 Their computational molecular structures were created 

and optimised using the program GOLD suite v5.5 of the Cambridge 

structural database system (CSDS).29 As no X-ray structure of human 

A3ARs was available, the homology model template (PDB code: 

2YDO), obtained from the Adenosil and platform 

(http://mms.dsfarm.unipd.it/Adenosiland), was used.30 The ChemPLP 

scoring functions of the GOLD suite v5.5 was used to calculate the 

binding scores between the 76 phytochemicals and A3ARs. A high 

score value indicates that the phytochemical has a high binding 

affinity to A3ARs and, thus, a high chance of producing a 

pharmacological effect. In this study, the docking score of the A3ARs 

binding ligand (adenosine) in the X-ray structure (PDB code: 2YDO) 

was used as a positive comparison. The docking methods of this study 

were the same as that of our previous study and details of the docking 

procedure and the validation of the docking methods are documented 

in this previous study,22 which evaluated the accuracy of the methods 

using a receiver operating characteristic (ROC) analysis with a dataset 

of 13,087 compounds. Our docking methods achieved an area under 

the curve (AUC) value of 0.85, which indicates the high sensitivity 

and specificity of its predictive power.  

 

Prediction of drug-like properties 

Absorption, distribution, metabolism, excretion and toxicity (ADME-

tox) are important factors that may affect the clinical efficacy and risk 

of side effects of a medicine. Computational ADME-tox predictions 

have become a routine procedure in drug discovery, and many 

software have been developed for this purpose.31 Here, the FAF-Drugs 

432 ADME-tox filtering platform was employed to screen the drug-like 

properties of the 76 phytochemicals. This study used the FAF-Drugs 4 

in house pre-built filters, ‘drug-like soft’, to define the thresholds of 

the physicochemical properties that a ‘drug-like’ molecule should 

have. For example, the thresholds of log P were -3 to 6, the thresholds 

of the ratio between the number of carbon atoms and non-carbon 

atoms were 0.1 to 1.1, and the thresholds of the total charge of a 

molecule was -4 to 4. Details of the thresholds of the physicochemical 

properties can be found on the FAF-Drugs4 webpage 

(https://fafdrugs4.rpbs.univ-paris-diderot.fr/filters.html). The 

phytochemicals that met these thresholds were considered to have 

acceptable drug-like properties for oral administration. This study also 

used the Veber33 and the Egan34 rules to access the oral bioavailability 

of the phytochemicals. The water solubility was estimated by the 

ESOL method.35 Both the GSK 4/40036 and Pfizer 3/7537 rules were 

also employed to screen the phytochemicals with favourable ADME-

tox properties.  

 

Statistical analysis 

Statistical Product and Service Solutions (SPSS) software (version 

26.0) and Microsoft Office Excel 2013 were used to analyse the 

results of this study. The data are stated as the mean ± standard 

deviation, and a p-value of less than 0.05 was considered as 

statistically significant. One-way ANOVA was used to assess the 

significance of the differences between 3 or more groups of the 

apoptosis and the cytotoxic assay. A 2-tailed t-test was used for the 

analysis of 2 groups.  

 

Results and Discussion 

Cytotoxic assays 

To explore the effect of HDW on the proliferation of human EC, 

Ishikawa cells were treated with the HDW injection, cisplatin and their 

combination at different concentrations (Table 1). After 24 hours of 

incubation, proliferation of the cells was detected by the MTT method. 

The results showed that HDW injection at a concentration of 50 
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μL/mL or higher had an inhibitory effect on the Ishikawa cells, and 

this effect was dose-dependent (p<0.01). The inhibition rate increased 

from 7.2% at 50 μL/mL to 96.3% at 200 μL/mL (Table 1). The 

inhibition rate of cisplatin was also dose-dependent, ranging from 

11.5% at 5 μg/mL to 86.4% at 40 μg/mL. The inhibition rate of 

cisplatin at 40 μg/mL is comparable with the HDW concentration 

between 150 μL/mL and 20 μL/mL. 

The combination of HDW and cisplatin can significantly inhibit the 

proliferation of Ishikawa cells in a dose-dependent manner (Table 1). 

The inhibition rate of the combinations was significantly higher than 

that of the two when administered separately (p < 0.05) (Table 1). For 

instance, the inhibition rate of the low concentration (50 μL/mL) of 

HDW was 7.2% and that of cisplatin (5 μg/mL) was 11.5%, but the 

inhibition rate increased to 11.5% when the two were combined. The 

combination of HDW and cisplatin at 50 μL/mL and 20 μg/mL, 

respectively, produced an inhibition effect that was comparable with 

cisplatin alone at 40 μg/mL. The stronger inhibition effect of the 

combination was also supported by their corresponding IC50 values. 

The combinations obtained lower IC50 values than the cisplatin or the 

HDW alone (Table 2). This suggests that HDW is a potential 

adjunctive agent for cisplatin, aiming to lower the dose of cisplatin 

and thus reduce its side effects.  

 

Apoptosis detection 

Flow cytometry was used to detect the apoptosis of the Ishikawa cells 

stained with Annexin V-FITC/PI, caused by HDW, cisplatin and their 

combination. The results indicated that HDW at ≥50 μL/mL and 

cisplatin at ≥5 μg/mL caused cellular apoptosis. The total rate of 

apoptosis caused by 5 μg/mL of cisplatin was 10.0%, while combining 

it with 50 μL/mL of HDW increased the rate to 17.6% (Figure 1). 

 

Table 1: Inhibition rates on Ishikawa cells by H. diffusa Willd, 

cisplatin and their combination 
 

Compounds (concentration) Inhibition rate 

Cisplatin (5 μg/mL) 11.5% ± 0.8% 

Cisplatin (10 μg/mL) 18.1% ± 4.2% 

Cisplatin (20 μg/mL) 68.4% ± 9.3% 

Cisplatin (40 μg/mL) 86.4% ± 3.6% 

  

H. diffusaWilld (50 μL/mL) 7.2% ± 0.2% 

H. diffusaWilld (100 μL/mL) 26.6% ± 4.9% 

H. diffusaWilld (150 μL/mL) 77.5% ± 4.8% 

H. diffusaWilld (200 μL/mL) 96.3% ± 0.9% 

  

H. diffusaWilld (25μl/ml) plus cisplatin  

(5 μg/mL) 

18.8% ± 3.5% 

H. diffusa Willd  (25 μL/mL) plus cisplatin 

(10 μg/mL) 

27.9% ± 0.7% 

H. diffusa Willd (25 μL/mL) plus cisplatin 

(20 μg/mL) 

75.0% ± 0.6% 

  

H. diffusa Willd (50 μL/mL) plus 

cisplatin (5 μg/mL) 

26.5% ± 1.9% 

H. diffusaWilld (50 μL/mL) plus 

cisplatin (10 μg/mL) 

47.9% ± 0.9% 

H. diffusaWilld  (50 μL/mL) plus 

cisplatin (20 μg/mL) 

81.6% ± 0.4% 

 

The rate was doubled for the combination of cisplatin (20 μg/mL) and 

HDW (50 μL/mL) compared with 20 μg/mL of cisplatin alone (Table 

2). 

Both the MTT assay and the flow cytometry experiments proved the 

ability of HDW to inhibit the survival of EC cells. More importantly, 

the combination of HDW and cisplatin was shown to produce more 

potent anti-cancer effects than when used alone. Cisplatin is an 

effective treatment of EC: its pharmacological mechanism of action is 

the formation of crosslinks between DNA pairs, thus preventing DNA 

repair and causing cell apoptosis. However, this action does not only 

affect cancer cells but also healthy cells that have a high reproductive 

rate, such as liver, hair and stomach cells. This causes various adverse 

effects that are unacceptable to some patients, such as alopecia, severe 

nausea and vomiting, hepatotoxicity, nephrotoxicity and 

neurotoxicity.38 The severity of these adverse effects is dose-

dependent. This study shows that the use of HDW with cisplatin may 

reduce its required dose and, thus, may reduce the risk of these side 

effects.39 

Chemotherapy resistance is another limitation of using cisplatin. 

Certain cancer cells have developed resistance mechanisms to various 

chemotherapy agents, such as efflux pumps, the nucleotide excision 

repair process, mismatch repair and homologous recombination.40 For 

cisplatin, certain cancer cells have developed mechanisms to repair 

DNA, reduce the intracellular accumulation and inactivate cisplatin.38 

Studies have demonstrated that the use of chemotherapy agents with 

an adjuvant that has some degree of anti-cancer properties, such as a 

natural product, can prevent the development of drug resistance.41 This 

study revealed the anti-cancer properties of HDW and the possibility 

of using it as an adjuvant with chemotherapy agents to overcome 

resistance.  

 

In silico molecular docking and the prediction of drug-like properties 

Docking was performed on adenosine and the 76 phytochemicals of 

HDW to the A3ARs to predict their binding affinities. The docking 

score of the natural substrate of A3ARs, adenosine, was considered to 

be a positive control, with a score of 63.6. Out of the 76 

phytochemicals, 31 achieved a higher binding score than adenosine. 

This indicates that the anti-endometrial property of HDW may be 

caused by a ‘pool’ of phytochemicals that affect A3ARs. Among these 

chemicals, daucosterol obtained the highest binding score of 131.24, 

followed by amentoflavone, 7α-hydroxystigmasterol, stigmasterol, β-

sitosterol and rutin. Table 3 shows the phytochemicals with the top 20 

docking scores and their corresponding drug-like property predictions. 

Among them, only 4 have adequate physicochemical properties that 

meet the thresholds of the ‘drug-like soft’ filters and were considered 

as acceptable molecules for oral administration. They were 5-

demethylsinensetin, 5-demethylnobiletin, diisobutyl phthalate and 5-

hydroxy-6,7,3,4-quatermethoxyflavonoid. The high rejection rate was 

mainly due to an inadequate Log P, the number of rotatable bonds and 

the number of hydrogen bond acceptors. The rejected molecules are 

considered here as not suitable for use as oral medication, but other 

routes of administration, such as injection and vaginal routes, may be 

appropriate.  

Daucosterol was reported to inhibit breast, prostate, colon and liver 

cancer cell growth by inducing apoptosis via the inactivation of 

different signalling pathways, including the PI3K/Akt and Wnt/β-

catenin pathway.42–44 It can also suppress cancer survival-related 

factors, such as VEGF, matrix metalloproteinase-2 (MMP 2), and 

matrix metalloproteinase-2 (MMP 9).45 This docking study predicted 

that daucosterol may also affect A3ARs. Daucosterol is a bioactive 

phytochemical of cordyceps,46 which can induce A3ARs and suppress 

melanoma, colon carcinoma, fibrosarcoma and lung carcinoma cells.47 

Thus, there is a chance that the A3AR agonist effects may be partly 

caused by daucosterol. However, daucosterol violated two of the 

Lipinski rule-of-five and was thus rejected by the FAF-Drugs ‘drug-

like soft’ filters.  

The anticancer effects of amentoflavone are well-documented: it 

inhibited breast, ovarian, lung and bladder cancer cells.48 Although no 

literature can be found on the effect of amentoflavone on EC cells, one 

of its structurally similar derivatives, ginkgetin (Figure 2) suppressed 

the growth of Ishikawa EC cells.38  
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Figure 1: Total rate of cellular apoptosis of Ishikawa cells caused by (A) 5 μg/mL of cisplatin was 10.0%, (B) 5 μg/mL of cisplatin + 50 

μL/mL HDW was 17.6%, (C) 20 μg/mL of cisplatin was 34.1% and (D) 20 μg/mL of cisplatin + 50 μL/mL HDW was 62.9%. 

 
The suggested pharmacological mechanism was the suppression of 

phosphoprotein kinase B, Janus kinase 1, and signal transducers and 

activators of transcription 3.49 According to the authors’ knowledge, 

this docking study is the first to suggest the effects of amentoflavone 

on A3ARs. However, amentoflavone was also rejected by the ‘drug-

like soft’ filters for use as an oral medication.  

The phytochemicals with the third and fourth highest docking scores 

were 7α-hydroxystigmasterol and stigmasterol. Their structures were 

very similar (Figure 2), and both of them have documented anti-cancer 

properties on ovarian cancer and gastric cancer cells.50,51 A recent 

study found the inhibition property of stigmasterol on the Nrf2 signal 

pathway.52 This pathway was found to be overexpressed in EC cells 

that were resistant to chemotherapy drugs, such as cisplatin. The study 

concluded that stigmasterol could overcome chemoresistance in EC 

therapy. The structure of stigmasterol is very similar to that of 7α-

hydroxystigmasterol (Figure 2); thus, it may also inhibit the Nrf2 

signal pathway, as both of these are phytochemicals of HDW, which 

may also be used as an adjuvant therapy to reduce the chemoresistance 

of EC therapy. Many of the other phytochemicals of HDW listed in 

Table 3 also have documented anti-cancer properties through various 

pharmacological mechanisms. The fifth-ranked phytochemical, β-

sitosterol, suppressed the growth of uterine cervix cancer cells by 

inhibiting microtubule formation during mitosis.53Rutin has shown 

anti-cancer properties on various cancer cells and may also reduce the 

adverse effects of chemotherapy.54 Trimethylpentadecan-2-one is a 

phytochemical of Pterocephalus nestorianus that has shown anti-

proliferative effects on six different human cancer cell lines.55 Lupeol 

acetate is a dietary triterpene that inhibited lung, liver and skin cancer 

cells in both in vitro and animal studies through modulating the NF-κ 

B and PI3K/Akt pathways.56,57Hexadecanoic acid is a hydroxylated 

fatty acid that has recently shown its ability in causing apoptosis on 

breast, cervical and colon cancer cells.58,59 

5-demethylsinensetin obtained the highest docking score among the 

phytochemicals with acceptable drug-like properties for oral 

administration (Table 3). It is predicted to have good oral 

bioavailability, and its physicochemical properties were within all the 

thresholds of the FAF-Drugs4 ‘drug-like soft’ filters. 5-

demethylsinensetin is a derivative of sinensetin (Figure 2), which has 

shown anti-cancer properties on gastric, breast and liver cancer cells 

by suppressing p53-related AMPK/mTOR signalling.60–62In vitro 

studies concluded the promising efficacy and minimal toxicity of 

sinensetin63 and also found a high binding affinity between sinensetin 

and A3Ars.64 Thus, the authors believe that 5-demethylsinensetin is 

worthy of further investigation as an oral anti-cancer therapy.  

5-demethylnobiletin is another well-studied phytochemical that 

obtained a high docking score and acceptable drug-like properties in 

this study (Table 3). It was found to inhibit lung cancer cells by 

inducing JNK (Jun N-terminal kinases) activation and G2/M cell cycle 

phase arrest, causing apoptosis.65 No literature was found to suggest 

any relationship between 5-demethylnobiletin and A3ARs; thus, this 

study is the first to indicate that 5-demethylnobiletin can bind to 

A3ARs.  

Diisobutyl phthalate is another phytochemical with a high binding 

score against A3ARs and with acceptable drug-like properties. 

However, its effect on EC cells is controversial. Diisobutyl phthalate is 

generally considered to be an endocrine-disrupting chemical.66 This 

means that it can affect human reproductive hormonal activities. 

Diisobutyl phthalate has been found to induce oestrogen receptors and 

stimulate the growth of oestrogen-dependent cancers, including 

ovarian and breast cancer.67 Overall, 80% of ECs were caused by the 

overexpression of oestrogen; thus, diisobutyl phthalate may potentially 

cause EC.68 On the other hand, diisobutyl phthalate has also been 

found to have anti-androgenic effects69 and overexpression of 

androgen was noticed in 93% of EC patients.70 This study predicts that 

diisobutyl phthalate may down regulate the expression of androgens 

by binding to A3ARs. 

 

Table 2: IC50 values for H. diffusa Willd, cisplatin and their 

combination on Ishikawa cells 
 

Compounds (concentration) IC50 

H. diffusa Willd 126.6μl/ml 

Cisplatin   15.8μg/ml 

Cisplatin + H. diffusaWilld (12.5μg/ml)   12.3μg/ml 

Cisplatin + H. diffusaWilld (25μg/ml)  9.7μg/ml 
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Table 3: Drug-like properties of the H. Diffusa Willd components with the top 20 docking scores agonists against A3Ars 
 

Component1 Docking 

score 

LogP MW Rotatable 

bonds 

Aqueous 

solubility 

Lipinski Oral 

Bioavailability 

Prediction2 

1 131.24 7.74 576.85 9 261.56 2 Good Rejected 

2 116.60 5.04 538.46 3 759.42 3 Good Rejected 

3 115.36 7.45 428.69 5 449.04 1 Good Rejected 

4 113.88 8.56 412.69 5 237.22 1 Good Rejected 

5 113.02 9.34 414.71 6 153.84 1 Good Rejected 

6 96.50 -1.29 610.52 6 46321.52 3 Good Rejected 

7 90.09 6.37 318.49 15 2523.99 1 Good Rejected 

8 88.34 -1.15 550.51 10 79665.88 3 Low Rejected 

9 87.55 3.72 358.34 5 4650.97 0 Good Accepted 

10 86.41 -0.82 564.54 11 65158.18 2 Low Rejected 

11 85.83 7.15 280.45 14 1611.42 1 Good Rejected 

12 85.22 3.23 388.37 6 6224.57 0 Good Accepted 

13 80.30 -1.15 550.51 10 79665.88 3 Low Rejected 

14 79.74 -1.15 550.51 10 79665.88 3 Low Rejected 

15 78.37 6.95 268.48 12 1651.54 1 Good Rejected 

16 78.32 4.11 278.34 8 6659.95 0 Good Accepted 

17 75.44 -0.61 564.54 11 57083.66 2 Low Rejected 

18 75.25 10.45 468.75 3 50.71 1 Good Rejected 

19 72.49 0.51 304.25 1 36804.01 0 Good Accepted 

20 72.38 7.17 256.42 14 1688.61 1 Good Rejected 

1Component 1=Daucosterol; 2=Amentoflavone; 3=7α-Hydroxystigmasterol; 4=Stigmasterol; 5=β-sitosterol; 6=Rutin; 7=ZINC3384216; 8=6-O-E-(p-

coumaroyl)scandoside methyl ester; 9=5-demethylsinensetin; 10=5-O-p-(methoxycinnamoyl)scandoside methyl ester; 11=(2E,9E)-Octadeca-2,9-

dienoic acid; 12=Demethylnobiletin; 13=6-O-Z-(p-coumaroyl)scandoside methyl ester; 14=(E)-6-O-(p-coumaroyl)scandoside methyl ester; 

15=6,10,14-Trimethylpentadecan-2-one; 16=Diisobutyl phthalate; 17=(E)-6-O-(p-coumaroyl)scandoside methylester-10-methylether; 18=Lupeol 

acetate; 19=5-Hydroxy-6,7,3,4-quatermethoxyflavonoid; 20=hexadecanoic acid. 
2Prediction indicates whether the components met the thresholds of the FAF-Drugs 4 in house pre-built filters, ‘drug-like soft’in predicting 

acceptable drug-like properties.Details of the thresholds can be found on the FAF-Drugs4 webpage (https://fafdrugs4.rpbs.univ-paris-

diderot.fr/filters.html). 

 
 

Figure 2: Structures of (A) 7α-hydroxystigmasterol, (B) stigmasterol, (C) amentoflavone, (D) ginkgetin, (E) daucosterol, (F) adenosine, 

(G) 5-demethylsinensetin, (H) sinensetin, (I) delfinidin and (J) 5-hydroxy-6,7,3,4-quatermethoxyflavonoid. 
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Another phytochemical of HDW with a high docking score and 

acceptable drug-like properties is 5-hydroxy-6,7,3,4-

quatermethoxyflavonoid (Table 3). Although no literature can be 

found on its effect on cancer, its structurally similar compound, 

delfinidin (Figure 2), demonstrated in vitro and in vivo anti-cancer 

activities on breast, prostate and lung cancer cells through various 

mechanisms, including the suppression of VEGF and MMP 9, and the 

inhibition of angiogenesis.71,72 Due to the high structural similarity 

between these two phytochemicals, 5-hydroxy-6,7,3,4-

quatermethoxyflavonoid may also have anti-cancer properties similar 

to delfinidin. This study suggests that it may also affect A3ARs, 

leading to apoptosis of EC cells. 

 

Conclusion 

The results of this study support future clinical studies on the extended 

use of HDW injection on EC by demonstrating that HDW can inhibit 

the growth of EC cells and cause apoptosis. The combined use of 

HDW and cisplatin produced more potent anti-cancer effects than their 

individual use. Thus, using HDW may reduce the required dose of 

cisplatin and minimise the risk of side effects. HDW may also prevent 

the development of chemotherapy resistance. HDW contains various 

phytochemicals that have anti-cancer properties proven by other 

studies in the literature. Findings from this study suggest that the 

combined effects of these phytochemicals caused the anti-EC property 

of HDW. . This study predicted that some of these phytochemicals 

have high binding affinities to A3ARs, a therapeutic target for various 

types of cancer. However, some of these compounds, such as 

diisobutyl phthalate, may be a potential isolation artefact and this is a 

limitation of this study. HDW is mainly used clinically as an injection, 

which could be due to the low oral bioavailability of many of its 

phytochemicals. This study predicted four phytochemicals of HDW 

that have both a high binding affinity to A3ARs and good oral 

bioavailability. 
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