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Introduction  

Elaeocarpus grandiflorus J. E. Smith is a member of the 

Elaeocarpaceae family, Magnoliopsida, known as rejasa or anyang-anyang 

(vernacular name) in Indonesia. This plant is a flora of regional identity with 

a declining population.
1
 Generally, species from Elaeocarpaceae are reported 

to contain active compounds such as alkaloids, flavonoids, glycosides, 

tannins, terpenoids, and phenolic acids.
2,3

 Elaeocarpus's bark has potential as 

an antidiabetic drug.
4
 Furthermore, the leaves can be used in herbal medicine 

as tonics, diuretics, and fever relievers.
5
 It is a potential HIV-1 protease 

inhibitory drug candidate, that prevents the virus from replicating.
6
 

The conservation status continuously shows a declining population of E. 

grandiflorus, and its abundance of potentially bioactive compounds makes 

studying this species essential. Furthermore, cell suspension culture is an 

effective strategy for increasing secondary metabolic production and 

preventing overexploitation of protected plant species.
7–9

 The methods are 

safe, economical, accessible, and straightforward compared to taking 

secondary metabolite directly from the plant tissue. Secondary metabolites 

contents obtained from the cell suspension culture process can also be 

optimized using synthetic auxin induction, such as by adding 4-amino 3,5,6-

tricloropicolinic acid (picloram) or 2,4-dichlorophenoxyacetic acid (2,4-D).
10 

Picloram and 2,4-D are powerful auxin-herbicides used as a plant growth 

regulator (PGR) to increase flavonoid content in the cell culture.
11,12

  

 

*Corresponding author. E mail: nooraini@mail.unnes.ac.id   

         Tel: +6281548844310 

 

Citation: Noor AH, Yustinus U.A, Nugrahaningsih WH, Safitri S, 

Fajar M, Nur W. LC-MS Based Secondary Metabolites Profile of 

Elaeocarpus grandiflorus J.E. Smith. Cell Suspension Culture Using 

Picloram and 2,4-Dichlorophenoxyacetic Acid. Trop J Nat Prod Res. 

2021; 5(8):1403-1408. doi.org/10.26538/tjnpr/v5i8.13 

 

Official Journal of Natural Product Research Group, Faculty of Pharmacy,  

University of Benin, Benin City, Nigeria. 

Meanwhile, the treatment with 7.5 mg/L picloram or 2.5 mg/L 2,4-D in E. 

grandiflorus culture media grows calli optimally and increases the total 

phenol concentration as a leading bioactive compound group.
13

 

High bioactive productivity, represented by secondary metabolite 

profile including content composition and concentration. Optimization 

of the picloram and 2,4-D concentration in the cell cultures still needs 

to be conducted. It is necessary to determine the optimal doses of 

synthetic-auxin to increase secondary metabolite productivity in E. 

grandiflorus cell suspension cultures. Therefore, this study aimed to 

analyze the effect of picloram and 2,4-D on the secondary metabolite 

profile of E. grandiflorus cell suspension cultures. 

 

Materials and Methods 

This research was an experimental study using E. grandiflorus cell 

suspension culture. A 2-year-old E. grandiflorus plant was collected 

from Bali Botanical Garden, Indonesian Institute of Sciences, Bali, 

Indonesia. A voucher specimen (No: HS–2020–07–016) was 

deposited in the Plant Culture Laboratory, Biology Department, 

Universitas Negeri Semarang, Central Java, Indonesia. Sample of 

petioles leaves were collected in June 2020 from this single plant. A 

total of six experimental treatments consisting of E. grandiflorus cells 

were conducted using picloram and 2,4-D at different concentrations 

following previous studies.
12,14

 

 

Culture media for cell suspension culture 

This research was conducted in the Plant Culture Laboratory, Biology 

Department, Universitas Negeri Semarang. Cell suspension media was 

made using McCown's woody plant basal salt mixture (WPM) Cat. 

No: M6774–10L (Sigma–Aldrich: Jakarta, Indonesia) supplemented 

with picloram or 2,4-D. The medium solution was divided into six 

Erlenmeyer flasks, and 3.5 mg/L, 5 mg/L, and 7.5 mg/L picloram or 

1.5 mg/L, 2.5 mg/L, and 3.5 mg/L 2,4-D was added. Three percent 

sucrose was added to each medium solution, and the pH was adjusted 

to 5.8. Then, a total of 20 mL of each media solution was poured into 
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Elaeocarpus grandiflorus contains prominent bioactive compounds. The bioactive metabolites 

can be increased using the cell suspension culture technique by adding synthetic auxin, including 

picloram and 2,4-dichlorophenoxyacetic acid (2,4-D). Therefore, this study aimed to analyze the 

effect of picloram and 2,4-D on the secondary metabolite profile of E. grandiflorus cell 

suspension culture. Petioles of young leaves from E. grandiflorus were used as explants for 

callus induction, and then the callus was used for cell suspension culture. The cell culture was 

maintained on a woody plant medium (WPM) for 30 days supplemented with picloram (3.5 

mg/L; 5.0 mg/L; and 7.5 mg/L), or 2,4-D (1.5 mg/L; 2.5 mg/L; and 3.5 mg/L). The 2.5 mg/L 

2,4-D treatment with the highest dry weight was harvested every five days until the 30
th
 day. 

Secondary metabolites in all treatments showed no significant difference (P = 0.949, F3.6 = 

0.228), and the highest content of secondary metabolites was kaempferols which was up to 

24.29  ±  0.77%, while the total average flavonoid content was up to 55.69  ±  0.96%. In 

addition, the secondary metabolites did not change significantly for 30 days (P = 0.974, F3.6 = 

0.279). Most plant energy and hormones were used for cell division and growth instead of 

secondary metabolite biosynthesis during this period. This study showed that picloram and 2.4-

D induction have no significantly different effect on the secondary metabolite profile in the E. 

grandiflorus cell suspension culture. 
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a 100 mL Erlenmeyer flask and it was tightly closed. It was sterilized 

in an autoclave at a temperature of 121°C and pressure between 1.1–

1.5 kg/cm
2
 for 20 minutes. 

 

Callus and cell culture induction 

The explants were collected from young petiole leaves 3–5 from the 

shoots. The petioles were managed aseptically, then sterilized using a 

fungicide, bactericide, and 5.25% NaClO solution following the 

procedure reported by Habibah et al.
12,14 

The petiole pieces were 

placed on a WPM agar medium and incubated at 26°C for five months 

in dark conditions. The produced calluses were used as a material for 

the induction of cell culture. The formation of cell suspension culture 

was performed by transferring calli into a 100 mL Erlenmeyer tube 

containing 20 mL of WPM medium with various PGR concentrations. 

The culture was shaken at 100 rpm, then incubated and maintained for 

30 days in the dark condition. The highest mass of cultured cells was 

achieved in the 2.5 mg/L 2,4-D treatment. It was harvested regularly 

every five days up to the 30
th 

day to evaluate the secondary 

metabolism profile. After harvesting, the cells were filtered and dried 

in an oven for 48 h at 60 °C. The dried cells were weighed and 

extracted for LC–MS analysis. 

 

Cell and secondary metabolites extraction 

The secondary metabolites were extracted following a procedure 

modified from Hao et al.
15

 The cell cultures were dried and ground 

into powder using a mortar and pestle. The fine cell powder was used 

for secondary metabolite extraction using 5 mL of methanol 

containing 1% HCl (v/v) and 5 mL of 2 N HCl was added. Then, the 

solution was incubated for 1 h at 90ºC in the thermal incubator. The 

extract solution was dried and resuspended in methanol.  

 

LC–MS Analysis 

The supernatant from the finished extraction stage was put into a Sep-

Pak C18 Cartridge (1 cc, 100 mg) that had been conditioned with 1 

mL 80:20 of acetonitrile-water (v/v). A total of 0.5 mL of the solution 

that comes out was then collected, and 1 mL of protein precipitation 

sample was added into the Sep-Pak C18 column. The test sample was 

then added 0.25 mL of 200 mM ammonium formate (NH4HCO2) in a 

50:50 of acetonitrile-methanol solution (v/v) into the Sep-Pak column. 

A total of 0.5 mL of the solution that came out was collected and 

added with 0.2 mL of 25:75 acetonitrile-buffer solution. (25 mM of 

ammonium formate, pH 4.5). The solution was filtered with a 

membrane filter Whatman® cellulose acetate 0.45 µm, then degassed 

and injected into the LCMS machine. 

The LC–MS machine used in this study was the LC–MS apparatus 

model of the Shimadzu LCMS - 8040 LC/MS (Shimadzu: Kyoto, 

Japan), using Shimadzu Shim Pack FC-ODS (2 mm x 150 mm, 3 µm) 

column in 35 °C with an injection volume up to 1 µL. The LC–MS 

machine uses a capillary voltage of 3.0 kV, an isocratic mobile phase 

mode, and a 0.5 mL/min flow rate. The collision energy used was 5.0 

V, 60 mL/hour for desolvation gas flow at 350 °C. The scanning 

process runs at a speed of 0.6 sec/scan (Mz: 10 –1000), a source 

temperature of 100 °C, and a run time of 80 minutes. 

 

Statistical analysis 

The secondary metabolite concentration was stated as a percentage 

value and analyzed using one-way ANOVA followed by the least-

significant difference (LSD) test with a confidence interval of 95%. 

All statistical analysis were performed using SPSS. v23. 

 

Results and Discussion 

The effect of picloram or 2,4-D induction in cell suspension cultures 

did not significantly differ in the percentage of secondary metabolite 

productivity but otherwise increased the dry weight. In addition, there 

was also no significant increase in the secondary metabolite 

concentration after 30 days. This result implies that during 30 days of 

culture, phytohormone induction may only affect the mass growth in 

E. grandiflorus cell suspension culture. More time may be needed 

more time for suspension culture to produce secondary metabolites.  

The growth rate of the E. grandiflorus cell suspension culture 

increased on the 15
th
 day and decreased on the day after (Figure 1), but 

the maximal dry weight was reached on the 30
th
 day. Meanwhile, 

according to Habibah et al.,
16

 the highest biomass can be obtained 

after 30 days of treatment in Stelechocarpus burahol cell cultures. 

Then, the lag (growth) phase of S. burahol cell suspension culture was 

observed for the first six days, followed by the log phase from six to 

30 days. Additionally, the cells reached the stationary phase after 30-

36 days of treatment, but the highest biomass was obtained on the 30
th
 

day.
16

 

 A high mass of fresh weight but low biomass synthesis of E. 

grandifloras cell suspension may correlate with cell division and 

cytoplasm content in the early growth step. In contrast, it started 

producing more biomass and organic materials for development after 

15
 
days of culture. This was shown by the decrease of fresh weight on 

the 20
th
 to 30

th
 day but increased dry weight. 

Several studies have shown that the production of secondary 

metabolites increases simultaneously alongside the dry-weight after 

synthetic auxin application. Picloram and 2,4-D effectively increase 

secondary metabolite production, especially flavonoids and phenolic 

acids.
15,16

 Most of the phytohormone addition to Digitalis davisiana 

cell culture increases digoxin and lanatoside C synthesis.
17 

However, 

in this study, the application of picloram and 2,4-D had no different 

effect on secondary metabolite productivity (P = 0.000), as presented 

in Table 1. 

E. grandiflorus cell suspension culture induced with 3.5 mg/L 2,4-D 

gave the highest level of secondary metabolites, although it was not 

significantly different from picloram induction or 2,4-D at lower doses 

(P = 0.949, F3.6 = 0.228). Separately, secondary metabolite 

compositions also showed insignificant results in all treatments (P> 

0.050). The concentrations of secondary metabolites, including 

flavonoids, showed no significant difference among the treatments (P 

= 0.974, F3.6 = 0.279). Nevertheless, induction using 3.5 mg/L 2,4-D 

resulted in the highest percentage of secondary metabolites 

concentration and the most dominant compound. The kaempferol 

component had the most abundant secondary metabolite production as 

a flavonoid group, especially in the low-dose picloram treatment 

(Table 2).  

Low concentration of picloram or 2,4-D may increase secondary 

metabolite production, including phenolic acids and tannins. A similar 

effect was also observed for alkaloids and terpenoid group 

compounds. Supporting the result, applying low picloram 

concentrations can stimulate DNA, RNA, and protein synthesis for the 

cell to conduct mitosis and growth. Meanwhile, high concentrations of 

picloram can act as cell division inhibitor.
15 

 

 Figure 1: The E. grandiflorus cell suspension mass during the 

culture step for 30 days. 
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Table 1: Secondary metabolite product per component group in the E. grandiflorus cell suspension culture on WPM medium with the 

addition of picloram and 2,4-D. 
 

Compound 

     
Concentration (%) 

    

Groups NTC PC.1 PC.2 PC.3 2,4-D_1.5 2,4-D_2.5 2,4-D_3.5 

Alkaloids 12 7.13 ± 0.13 6.72 ± 0.13 7.11 ± 0.15 6.83 ± 0.13 6.67 ± 0.12 7.25 ± 0.11 

Dicarboxylic acid 5 3.65 ± 0.19 5.27 ± 0.13 5.50 ± 0.14 5.36 ± 0.15 5.32 ± 0.19 4.31 ± 0.08 

Flavonoid 32 56.92 ± 0.20 54.81 ± 0.19 56.19 ± 0.19 54.33 ± 0.20 55.76 ± 0.19 56.15 ± 0.19 

Phenolic acid 7 12.15 ± 0.64 12.03 ± 0.63 12.00 ± 0.62 12,49 ± 0.00 11.90 ± 0.00 11.89 ± 0.00 

Phytosterol 1 0.27 ± 0.00 0.30 ± 0.00 0.27 ± 0.00 0.28 ± 0.00 0.27 ± 0.00 0.27 ± 0.00 

Tannin 1 2.75 ± 0.00 2.70 ± 0.00 2.72 ± 0.00 2.83 ± 0.15 2.70 ± 0.14 2.71 ± 0.15 

Terpenoid 18 6.20 ± 0.14 6.48 ± 0.15 5.93 ± 0.14 6.34 ± 0.14 5.88 ± 0.14 6.09 ± 0.15 

Vitamin 10 3.28 ± 0.18 3.77 ± 0.18 3.48 ± 0.17 3.63 ± 0.18 4.07 ± 0.25 3.36 ± 0.18 

Other compounds 10 7.65 ± 0.50 7.92 ± 0.48 7.80 ± 0.48 7.89 ± 0.51 7.43 ± 0.42 7.96 ± 0.48 

Note: NTC = number of a total components. PC1-3 represents the treatment with 2.5 mg/L, 5 mg/L, and 7.5 mg/L of picloram, respectively. Then 2,4D 

1-3 represents the treatment with 1.5 mg/L, 2.5 mg/L and 3.5 mg/L of 2,4-D, respectively. 
 

 

On the other hand, the LC–MS analysis showed no significant 

increase in secondary metabolites from E. grandiflorus cell suspension 

cultures from the 5
th
 day up to the 30

th
 day. Furthermore, some 

secondary metabolites such as elaeocarpenine from the alkaloid group 

were not detected on the 15
th
 days. Other compounds from the 

dicarboxylic acid group, such as fumaric acid and succinic acid, were 

not detected on the 15
th
 and 20

th
 day, respectively (Table 3). 

The most abundant compounds identified based on the LC–MS 

analysis was kaempferol from the flavonoid group. The low 

concentration of picloram contributed to increased flavonoid 

biosynthesis and effectively increased secondary metabolic 

productivity compared to the high dose of synthetic auxin. 

Furthermore, picloram and 2,4-D have a similar structure and 

metabolism to natural IAA, but they cannot be degraded and 

eliminated.
18

 Meanwhile, picloram and 2,4-D may regulate 

metabolism at the cellular level through the exact mechanism of auxin, 

which is mediated by an auxin-influx carrier or auxin resistant 1⁄like 

aux1 (AUX1/LAX) protein.
19,20

 Picloram and 2,4-D then influence the 

phosphorylation of auxin/IAA repressor proteins and trigger the 

regulation of the associated genes. 

Low doses of picloram and 2,4-D were correlated with rate of cell 

growth. Auxin encourages Aux/IAA complex formation with auxin-

to-respond factor (ARF) at low concentrations to suppress the auxin-

induced gene expression.
21,22

 Gene regulation is not expressed in 

environments with abundant auxin. At high concentrations, auxin 

binds to and acts as an adhesive for Aux/IAA proteins to attach to the 

F-box protein-transport inhibitory respond 1 (TIR1) and mediate 

degradation.
23,24

 This process reduces the amount of Aux/IAA protein 

in the cytoplasm, which increases the formation of ARF homodimers 

and the chance to bind to auxin response elements (AuxREs).
25

 

Furthermore, the protein TIR1 and auxin-related F-box (AFB) proteins 

are gene-related nuclear receptors regulated by the auxin. However, 

AFB1-3 has a higher affinity for 2,4-D than TIR1,
20,

 and the 

appearance of 2,4-D at high doses tends to form a complex molecule 

with TIR1/AFB1-3, which triggers the degradation of Aux/IAA. High 

amounts of auxin also result in the inhibition of signaling pathways in 

root differentiation.
24

 Therefore, the use of 2,4-D in high doses may 

reduce the growth rate or the production of secondary metabolites. 

This is consistent with the common use of 2,4-D, which is applied as a 

weed inhibitor herbicide. 

Its molecular structure similarity to IAA influences the inhibition 

mechanism of picloram and 2,4-D. The dichlorophenyl ring and two 

chlorine atoms in the 2,4-D molecule have a similar reactivity to IAA 

when interacting with TIR1, and the hydrophobic charge of the 

molecule mimics the characteristics of IAA.
18

 For the other 

mechanism, an AFB structure may be more suitable for binding with 

picloram but induce the exact same mechanism as 2,4-D.
26

 However, 

low doses of picloram and 2,4-D effectively trigger cell proliferation, 

organ differentiation, and organ formation by regulating growth 

mechanisms.
27,28

 

The presence of auxin at low concentrations promotes cell cycle 

progression by regulating the mitosis-related genes expression through 

several mechanisms. First, it triggers cyclin-dependent kinase 

complexes' formation by activating catalytic cyclin-dependent kinase-

A (CDKA) and D-type cyclins (CYCD).
29

 Second, auxin inhibits 

kinase inhibitory protein (KIP)-related protein (KRP) but activates 

CDKA/CYCD and phosphorylates retinoblastoma-related protein 

(RBR). Auxin releases the E2F/DPA complex that promotes the cell 

cycle transition from the first growth phase (G1) to the synthesis phase 

(S) and triggers gene expression during interphase.
30

 

At the same time, the CDKA/CYCD protein and auxin initiate the cell 

cycle transition from G1 to S phase.
31

 Furthermore, auxin triggers the 

degradation of S-phase kinase-associated protein 2 (SKP2), thereby 

activating SKP1-Cullins1-F-box protein (SCF) E3 ubiquitin-protein 

ligase to degrade E2FC/DPB/RBR repressor protein (inhibitor of the 

mitotic-related gene during the S phase).
32,33

 It also inhibits the 

degradation of E2FA-B/DPA protein from RBR, thereby triggering 

the activity of S-phase protein synthesis. Phytohormones, including 

auxin and cytokines, activate a CDC25-like phosphatase that is 

involved in the cycle transition from the G2 to the M phase.
34

 

The phase transition process in the cell cycle escalates continuous 

division, increasing cell volume and biomass. By following the 

concentration of each compound that did not change from the 5
th
 to the 

30
th
 day, auxin, carbon, and energy may still be required for growing 

and building the cell's structural components. According to Dinda et 

al. (2018),
35

  it is relevant that during cell growth, all available 

resources in the culture media are mainly used for cell division rather 

than secondary metabolite production. Furthermore, based on the plant 

biosynthesis mechanism, plant cells mainly produce secondary 

metabolites from sugar-derivative compounds; such as 

glyceraldehyde-3 phosphate (G3P).
36

 Meanwhile, G3P is converted 

into sugar during cell growth to produce energy for cytogenesis and 

structural components such as cellulose.  

The secondary metabolite profile is different depending on the tissue 

or organ type, developmental stage, and environmental condition. 

More specifically, secondary metabolites such as alkaloids, tannins, 

and phenolic compounds are generally synthesized to adapt to 

environmental stress conditions,
37,

 including physical and chemical 

stress or a defense mechanism against pathogens. Even so, the 

secondary metabolites, especially kaempferol, are pharmacologically 

necessary for the beneficial drugs. Several studies has proven that 

kaempferol improves brain tissue healing after injury, prohibits 

oxidative stress,
38

 increases lung cancer apoptosis and autophagy,
39

 

and prevents various diseases.
40 
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Table 2: The content of various secondary metabolites in the E. grandiflorus cell suspension culture on WPM medium with the 

addition of picloram and 2,4-D 
 

Groups Components 

Concentration (%) 

 

PC.1 PC.2 PC.3 2,4-D_1.5 2,4-D_2.5 2,4-D_3.5 

Alkaloids Grandisine 3.80 ± 0.48 3.32 ± 0.51 3.83 ± 0.42 3.40 ± 0.00 3.42 ± 0.91 4.32 ± 0.45 

 Elaeokanine C 1.17 ± 0.00 1.19 ± 0.01 1.18 ± 0.05 1.23 ± 0.03 1.17 ± 0.01 1.18 ± 0.00 

 Elaeocarpenine 0.65 ± 0.02 0.66 ± 0.02 0.64 ± 0.03 0.67 ± 0.03 0.63 ± 0.01 0.64 ± 0.01 

Dicarboxylic Acids Fumaric acid 0.55 ± 0.53 1.08 ± 0.02 1.06 ± 0.04 1.10 ± 0.05 1.05 ± 0.18 0.87 ± 0.09 

 Malic acid 0.95 ± 0.01 0.96 ± 0.02 0.94 ± 0.04 0.98 ± 0.16 1.14 ± 0.20 0.94 ± 0.10 

 Succinic acid n/d 0.83 ± 0.02 0.81 ± 0.03 0.84 ± 0.04 0.80 ± 0.01 0.81 ± 0.00 

Flavonoids Kaempferol 25.07 ± 1.80 23.27 ± 1.48 24.75 ± 1.38 23.36 ± 1.19 24.55 ± 018 24.73 ± 0.09 

 Quercetin 6.81 ± 0.11 6.71 ± 0.02 6.73 ± 0.28 7.00 ± 0.33 6.67 ± 0.05 6.72 ± 0.03 

 Procyanidin 3.61 ± 0.01 3.60 ± 0.04 3.56 ± 0.15 3.71 ± 0.18 3.54 ± 0.02 3.56 ± 0.01 

Phenolic Acids Epigallocatechin 4.09 ± 0.06 4.03 ± 0.00 4.04 ± 0.17 4.20 ± 0.20 4.01 ± 0.03 4.04 ± 0.02 

 Gallic acid 2.93 ± 0.05 2.87 ± 0.02 2.89 ± 0.12 3.01 ± 0.14 2.87 ± 0.02 2.90 ± 0.01 

 p-Coumaric acid 1.56 ± 0.01 1.55 ± 0.01 1.54 ± 0.06 1.61 ± 0.08 1.53 ± 0.08 1.45 ± 0.04 

Terpenoids Citronellal 0.91 ± 0.01 0.91 ± 0.02 0.89 ± 0.04 0.93 ± 0.04 0.89 ± 0.01 0.89 ± 0.00 

 Citronellol 0.88 ± 0.01 0.89 ± 0.02 0.87 ± 0.04 0.90 ± 0.04 0.86 ± 0.01 0.87 ± 0,00 

 Lutein 0.54 ± 0.01 0.53 ± 0.00 0.53 ± 0.02 0.51 ± 0.01 0.52 ± 0.02 0.54 ± 0.01 

Vitamins Ascorbic acid 1.48 ± 0.03 1.45 ± 0.02 1.43 ± 0.03 1.40 ± 0.02 1.43 ± 0.53 0.90 ± 0.43 

 Niacin 0.69 ± 0.59 1.27 ± 0.14 1.41 ± 0.06 1.35 ± 0.52 0.83 ± 0.12 0.71 ± 0.33 

 α-Tocopherol 0.22 ± 0.00 0.22 ± 0.02 0.24 ± 0.03 0.21 ± 0.00 0.22 ± 0.03 0.24 ± 0.02 

Note: n/d = not detected. PC1-3 represents the treatment with 2.5 mg/L, 5 mg/L, and 7.5 mg/L of picloram, respectively. Then 2,4D 1-3 

represents the treatment with 1.5 mg/L, 2.5 mg/L and 3.5 mg/L of 2,4-D, respectively. 

 

Table 3: Secondary production in the E. grandifloras cell suspension culture on WPM medium with the addition of 2.5 mg/L 2,4-D  
 

Comp. Group Comp. Name 
Days 

5
th
 10

th
 15

th
 20

th
 25

th
 30

th
 

Alkaloids Grandisine 3.98 ± 0.04 4.01 ± 0.04 3.97 ± 0.17 3.80 ± 0.14 3.67 ± 0.26 3.93 ± 0.03 

 Elaeokanine C 1.26 ± 0.02 1.24 ± 0.04 1.20 ± 0.00 1.20 ± 0.02 1.22 ± 0.01 1.21 ± 0.01 

 Elaeocarpenine n/d 0.67 ± 0.01 0.66 ± 0.02 0.65 ± 0.01 0.66 ± 0.01 0.67 ± 0.12 

Dicarboxylic acids Fumaric acid 1.13 ± 0.02 1.11 ± 0.01 n/d 1.08 ± 0.00 1.09 ± 0.00 1.09 ± 0.00 

 Malic acid 1.00 ± 0.02 0.98 ± 0.03 0.96 ± 0.01 0.95 ± 0.02 0.97 ± 0.00 0.97 ± 0.00 

 Succinic acid 0.87 ± 0.02 0.85 ± 0.02 0.83 ± 0.11 n/d 0.84 ± 0.01 0.84 ± 0.01 

Flavonoids Kaempferol 25.28 ± 0.88 24.40 ± 0.38 24.78 ± 0.33 25.11 ± 1.34 23.77 ± 1.35 25.12 ± 0.37 

 Quercetin 7.18 ± 0.12 7.05 ± 0.34 6.72 ± 0.11 6.83 ± 0.12 6.94 ± 0.14 6.81 ± 0.11 

 Procyanidin 3.80 ± 0.07 3.74 ± 0.13 3.61 ± 0.01 3.62 ± 0.06 3.68 ± 0.02 3.66 ± 0.02 

Phenolic acids Epigallocatechin 4.31 ± 0.07 4.23 ± 0.19 4.04 ± 0.19 4.10 ± 0.07 4.17 ± 0.07 4.09 ± 0.06 

 Gallic acid 3.08 ± 0.05 3.03 ± 0.15 2.87 ± 0.06 2.93 ± 0.05 2.98 ± 0.07 2.91 ± 0.06 

 p-Coumaric acid 1.65 ± 0.03 1.62 ± 0.07 1.55 ± 0.01 1.57 ± 0.03 1.59 ± 0.02 1.57 ± 0.02 

Terpenoids Citronellal 0.95 ± 0.02 0.94 ± 0.02 0.91 ± 0.01 0.91 ± 0.02 0.92 ± 0.00 0.93 ± 0.00 

 Citronellol n/d 0.91 ± 0.02 0.89 ± 0.01 0.88 ± 0.02 0.89 ± 0.00 0.90 ± 0.15 

 Lutein 0.54 ± 0.01 0.53 ± 0.00 0.53 ± 0.02 0.51 ± 0.01 0.52 ± 0.02 0.54 ± 0.01 

Vitamins Ascorbic acid 1.48 ± 0.03 1.45 ± 0.02 1.43 ± 0.03 1.40 ± 0.02 1.43 ± 0.53 0.90 ± 0.43 

 Niacin 0.69 ± 0.59 1.27 ± 0.14 1.41 ± 0.06 1.35 ± 0.52 0.83 ± 0.12 0.71 ± 0.33 

 α-Tocopherol 0.22 ± 0.00 0.22 ± 0.02 0.24 ± 0.03 0.21 ± 0.00 0.22 ± 0.03 0.24 ± 0.02 

Note: n/d = not detected 
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Interestingly, secondary metabolites may not directly correlate with 

the growth and development of plant tissues. Thus, the increase in 

biomass is not necessarily positively correlated with the number of 

specific secondary metabolites. Most secondary metabolites are 

synthesized from precursor compounds produced in the Calvin cycle, 

glycolysis, or Krebs cycle. The precursors are generally C atom-based 

organic compounds with added amine groups (NHx) or pentose sugars. 

Plants have various sugars, including 3-deoxy-O-arabinose-

heptulosonate phosphate (DAHP), which are metabolized and reduced 

to synthesize shikimate.
41 

Shikimate is involved in synthesizing 

phenolic groups, aromatic amino acids (tryptophan, tyrosine, and 

phenylalanine) and primary metabolites.
 

We found that the percentage of secondary metabolite production did 

not change significantly despite increasing the synthetic auxin 

concentrations. Therefore, the growth effects of picloram and 2,4-D 

may be constant and stable for E. grandifloras cell suspensions after 

30 days of culture. This study also proved that the cell suspension 

culture originating from young leaf petioles of the E. grandifloras J. E. 

Smith plant can produce abundant secondary metabolites. The cell 

suspension culture may need more time to produce secondary 

metabolites, or the environmental conditions in the media or 

incubation room did not encourage the synthesis of secondary 

metabolites. Therefore, strategies to improve the result may also 

involve applying environmental stress during cell suspension culture 

to increase the plant’s secondary metabolites. Therefore, future 

research may investigate biological and ecological pressure in cell 

suspension culture metabolism and growth regulation. 

 

 

Conclusion 

Picloram and 2,4-D at various concentrations did not increase the 

secondary metabolite concentration or the type of the compound in E. 

grandiflorus cell suspension culture. Furthermore, the results of LC–

MS analysis also did not show any significant changes in the 

percentage of secondary metabolite profiles from the 5
th
 to the 30

th
 

day. Therefore, the energy and organic sources may be allocated to 

support cell suspension culture for growth instead of secondary 

metabolite production. At least 92 secondary metabolites were 

identified, with kaempferols from the flavonoid group as the most 

abundant bioactive compound. Further study should be conducted by 

adjusting the synthetic auxin concentration lower than the dose used in 

this research. Additionally, it may be necessary to improve the 

treatment by applying stress to the cell suspension cultures to increase 

the production of secondary metabolites. 
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