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Introduction  

Flavonoids are the largest family of phenolic secondary 

metabolites, found in almost all herbs, fruits and vegetables.
1-3

 Their 

molecular structures consist of two benzene rings A and B that are 

joined by a heterocyclic pyran ring C forming the benzo-pyrone (C6–

C3–C6) moiety.
4,5

 Rings A and C compose of the chroman (C6–C3) 

nucleus.
6
 Flavonoids can be divided into classes such as flavones, 

flavonols, flavanones and flavanols.
4,5,7

 Flavones (examples: apigenin 

and luteolin) have a C2–C3 double bond and a 4-carbonyl group, but 

lack the C3 hydroxyl group at ring C. Flavonols (e.g., fisetin, 

quercetin, morin and myricetin) possess all the three functional 

moieties. Flavanones (e.g., naringenin, hesperitin and taxifolin) lack 

the C2–C3 double bond while flavanols (e.g., catechin and 

epicatechin) lack the C2–C3 double bond and the 4-carbonyl group.
1,2

  

Flavonoids have been reported to possess broad bioactivities such as 

anticancer, immunomodulation and antioxidant activities, that can be 

enhanced, to a certain extent, by methylation.
8
 Methylated flavones 

containing only one or two methoxy groups are metabolically more 

stable than polymethoxylated flavones and have more superior 

chemopreventive properties.
9 
Investigations on the structure-activity  
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relationship   of   polymethoxylated   flavones   such   as   nobiletin   

and tangeretin showed a correlation between the number/position of 

methoxy group and their antiproliferative activity.
10,11

  

In this short review, the chemistry, plant sources, bioactivities and 

structure-activity relationships of acacetin (ACT) and chrysoeriol 

(CSE) are reviewed. These methylated flavones are found in many 

plant species and have been reported to exhibit diverse 

pharmacological properties notably anti-cancer activities. To date, 

only ACT has been reviewed,
12,13

 while CSE has not been reviewed.  

 

Chemistry  

Acacetin  

ACT (5,7-dihydroxy-4'-methoxyflavone) is a natural methylated 

flavone.
12

 Its molecular formula is C16H12O5 and its molecular weight 

is 284 g/mol. Being a flavone, ACT has a C2–C3 double bond, a 4-

carbonyl group but lacks the C3 hydroxyl group of ring C (Figure 1).  

 

 
Figure 1: Molecular Structures of Acacetin, Chrysoeriol, 

Luteolin, Diosmetin, Apigenin and Chrysin  
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Flavonoids are plant secondary metabolites that are well-known for their bioactivities. In this 

article, the chemistry, plant sources, bioactivities and structure-activity relationships of acacetin 

(ACT) and chrysoeriol (CSE) are reviewed. Of these two flavones, only ACT has been reviewed 

but not CSE. Sources of information cited were from Google Scholar, PubMed, PubMed 

Central, Science Direct, Web of Science, J-Stage, PubChem and Directory of Open Access 
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of coverage, although recent references accord higher priority. Flavones, a class of flavonoids, 

have a C2–C3 double bond and a 4-carbonyl group but lack the C3 hydroxyl group at ring C. 

ACT and CSE are lesser-known methylated flavones with hydroxyl groups at C5 and C7 of ring 

A. The methoxy group of ACT is at C4' while that of CSE is at C3'. Found in many plant 

species, ACT and CSE have generated much research interest because of their diverse 

pharmacological activities, notably, their anti-cancer properties. The anti-cancer effects and 

molecular mechanisms of ACT towards lung, liver, gastric, prostate, breast and squamous cancer 

cells including leukaemia have been reported. Studies have shown that CSE inhibited breast, 

lung and pancreatic cancer cells including myeloma. Other bioactivities and structure-activity 

relationships of ACT and CSE are also briefly mentioned. Some areas for further research are 

suggested. 
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The molecule has two hydroxyl groups at C5 and C7, and one 

methoxy group at C4'. ACT is also known as apigenin-4ꞌ-methyl ether 

because it is structurally similar to apigenin which lacks the 4'-

methoxy group. ACT is also similar to diosmetin, another 

methoxyflavone with hydroxyl groups at C3', C5 and C7, and a C4'-

methoxy group.
14

  

 

Chrysoeriol 

CSE (4',5,7-trihydroxy-3'-methoxyflavone) is another natural 

methylated flavone. Its molecular formula is C16H12O6 and its 

molecular weight is 300 g/mol. Being a flavone, CSE has a C2–C3 

double bond, a 4-carbonyl group but lacks the C3 hydroxyl group of 

ring C (Figure 1). The molecule has three hydroxyl groups at C5, C7 

and C4', and one methoxy group at C3'. CSE is also called luteolin-3ꞌ-

methyl ether because it is structurally similar to luteolin which lacks 

the 3'-methoxy group. CSE is similar to diosmetin in that they both 

have a methoxy group and a hydroxyl at the B ring i.e., C3' and C4' 

for CSE and C4' and C3' for diosmetin. 

 

Plant Sources  

Acacetin 

ACT is found in the aerial parts of Chrysanthemum zawadskii 

(Zawadskii chrysanthemum),
15 

 Agastache mexicana (Mexican giant 

hyssop),
16

 Potentilla evestita (cinquefoil),
17 

Ziziphora clinopodioides 

(blue mint bush),
18 

Robinia pseudoacacia (black locust tree),
19

 

Artemisia species (mugworts),
20 

 and Saussurea involucrata (snow 

lotus);
21 

 flowers of Chromolaena odorata (Siam weed),
22 

 and 

Chrysanthemum morifolium (florist’s daisy);
23

 seeds of Carthamus 

tinctorius (safflower);
24 

 and Acacia honey.
25 

 In the review on the 

therapeutic potential of ACT,
13

 plant sources of ACT consist of 80 

plant species, commonly reported in the genera of Artemisia (five 

species) and Chrysanthemum (four species). 

 

Chrysoeriol 

CSE is found in various plant species including the flowers of 

Lonicera japonica (Japanese honeysuckle),
25

 tea of Aspalathus 

linearis (rooibos),
27,28

 aerial parts of Medicago sativa (alfafa),
29

 leaves 

of Eurya ciliata (no common name),
30,31

 and flowers of C. morifolium 

(florist’s daisy).
32

  

 

Anti-Cancer Properties 

Acacetin 

ACT inhibited the growth of A549 lung and MCF-7 breast cancer 

cells with IC50 values of 9.46 μM
33

 and 26.4 μM,
34

 respectively. ACT 

from the aerial parts of C. zawadskii showed strong cytotoxic activity 

against HCT116 colon and UO-31 renal cancer cells with IC50 values 

of 2.44 and 2.89 μg/mL, respectively.
15

 Luteolin, the other compound 

isolated, displayed no activity against the tested cancer cells.  Tested 

against Jurkat T leukaemia and HSC-3 oral squamous carcinoma cells, 

the IC50 values of ACT were 25.8 μM
35

 and 25.0 μg/mL,
36

 

respectively. The anti-cancer effects and molecular mechanisms of 

ACT towards different lung (A549), liver (HepG2), gastric (AGS), 

prostate (LNCaP and DU145), breast (MCF-7), oral squamous (HSC-

3), head and neck squamous (UM-SCC-22A), and colon (SW480 and 

HCT-116) cancer cells including leukaemia (Jurkat T and B-

lymphocytes), FaDu pharyngeal carcinoma, and U87 glioblastoma are 

shown in Table 1.  

 

Table 1: Anti-Cancer Effects and Molecular Mechanisms of Acacetin towards Different Cancer Cell Lines 
 

Cancer cell line & type  Anti-cancer effect and molecular mechanism of ACT Reference 

A549 lung Induced cell cycle arrest at G1 phase and cell apoptosis involving the expression  

of p53 and activity of the Fas/Fas ligand.  

33 

MCF-7 breast  Induced apoptosis via caspase cascade, mitochondria-mediated death signalling  

and SAPK/JNK1/2-c-Jun activation.  

34 

Jurkat T leukaemia Induced apoptosis via up-regulation of Bax, down-regulation of Bcl-2, and possibly by activation of 

the Fas-mediated pathway. 

35 

HSC-3 oral squamous  Induced apoptosis through activation of a MAPK-mediated pathway followed by induction of a 

mitochondria- and caspase-dependent mechanism. 

36 

HepG2 liver Inhibited cell proliferation by arresting cell cycle progression and induced apoptosis involving the 

activity of p53 and Fas/Fas ligand.  

37 

AGS gastric Triggered apoptosis was mainly associated with ROS production, mitochondrial dysfunction, and Fas 

activation.  

38 

LNCaP & DU145  

prostate 

Inhibited cell proliferation and cell cycle progression, and induced apoptotic cell death accompanied 

by PARP cleavage. 

39 

A549 lung Inhibited cell proliferation by reducing MMP‐2 and u‐PA expressions via reduced phosphorylation of 

JNK, and reducing NF‐κB and AP‐1 binding activities.  

40 

DU145 prostate Inhibited cell invasion and migration via inactivation of the p38 MAPK signalling pathway.  41 

A549 lung Inhibited cell invasion and migration via inactivation of p38α and involvement of  

the MKK and/or MLK signalling pathways.  

42 

DU145 prostate Exhibited in vitro and in vivo anti-cancer activity via the suppression of NF-κB/Akt signalling. 43 

B-lymphocytes  

leukaemia 

Induced apoptosis by targeting mitochondria, through increased ROS formation, MMP collapse, 

increased MPT, release of cytochrome c and caspase 3 activation. 

44 

UM‐SCC‐22A head & neck 

squamous  

Induced apoptosis via cytochrome c release, activation of caspase‐3, and possibly involving the 

muscarinic M3R pathway. 

45 

FaDu pharyngeal carcinoma Inhibited cell growth and induced apoptosis via the death receptor-mediated and  

the mitochondria-mediated apoptotic pathways. 

46 

 

SW480 & HCT-116 colon Induced mitochondrial ROS-mediated cell death by inducing AIF. 47 

U87 glioblastoma Induced Cdk-cyclin mediated G2/M phase arrest and triggered ROS-mediated apoptosis. 48 

 

 

 

 

 

 

 

 

Abbreviations: AIF = apoptosis-inducing factor, AP-1 = activator protein 1, Bax = Bcl-2 associated X protein, Bcl-2 = B-cell lymphoma 2,  JNK = c-jun 

N-terminal kinase, M3R = M3 receptor, MAPK = mitogen-activated protein kinase, MKK = mitogen-activated protein kinase kinase, MLK = mixed-

lineage protein kinase, MMP = matrix metallopeptidase, MPT = mitochondrial permeability transition, NF-κB = nuclear factor-kappa B, PARP = poly-

(ADP-ribose) polymerase, ROS = reactive oxygen species, SAPK = stress-activated protein kinase, and u-PA = urokinase-type plasminogen activator. 
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Chrysoeriol 

CSE inhibited the proliferation of RPMI 8226 and KM3 multiple 

myeloma cells at IC50 values of 26 and 35 μmol/L, respectively.
49

 

Against leukaemia HL-60 cells, growth inhibitory effects of CSE were 

dose-dependent with IC50 value of 29 μM
50

 and 15 µM against A549 

lung cancer cells.
51

 Against MRC-5 normal lung cells, cytotoxicity of 

CSE was significantly weaker with IC50 value at 93 μM.
51

 Earlier, the 

anti-proliferative activity of CSE, tested against MCF-7 breast, DMS-

114 lung, HT-29 colon, SL-MEL5 melanoma, DU-145 prostate cancer 

cells displayed IC50 values of 7, 17, 20, 23 and 30 μM, respectively.
52

 

In comparison, luteolin (CSE without the methoxy group) exhibited 

IC50 values of 3, 11, 21, 32 and 32 μM, respectively. 

In recent years, several studies reported on the anti-cancer properties 

of CSE by testing different cancer cell lines. CSE significantly 

inhibited cell proliferation and regulated cell cycle of RPMI 8266 and 

KM3 multiple myeloma cells by suppression of the PI3K-AKT-mTOR 

pathway.
49

 CSE promoted cell cycle arrest at G2/M and inhibited 

migration and invasion of MDA-MB-231 cells by down-regulation of 

matrix metallopeptidase 9 (MMP-9) and cyclooxygenase-2 (COX-2) 

expression.
53

 CSE exerted in vitro and in vivo cytotoxic effects on 

A549 lung cancer cells via the activation of autophagy, sub-G1 cell 

cycle arrest, cell migration and invasion inhibition, and modulation of 

the mitogen-activated protein kinase (MAPK)/extracellular signal-

regulated kinase (ERK) signalling pathway.
51 

8-CSE triggered 

apoptosis of SW1990 pancreatic cancer cells in vitro by inhibiting B-

cell lymphoma 2 (BCL-2), the anti-apoptotic protein.
54

  

Related to anti-cancer activities, CSE inhibited DNA adduct formation 

with benzo[α]pyrene
55

 and inhibited the formation of a carcinogenic 

estrogen metabolite
56

 in MCF-7 breast cancer cells. In addition, CSE 

inhibited the efflux transporter breast cancer resistance protein 

(BCRP/ABCG2) more strongly than ACT with IC50 values of 0.01 and 

0.14 μM, respectively.
57

 The anti-cancer effects and molecular 

mechanisms of CSE towards different breast (MCF-7 and MDA-MB-

231), pancreas (SW1990), lung (A549) cancer cells including 

myeloma (RPMI 8226 and KM3) are shown in Table 2. 

 

Other Bioactivities 

Acacetin 

In this short review, the bioactivities of ACT are updated based on 

recent reviews.
12,13

 ACT possesses antibacterial,
59

 antiviral,
60

 anti-

diabetic,
61

 anti-neuroinflammatory,
62,63

 anti-arthritic,
64

 anti-aging,
65

 

anti-Alzheimer
66

 and antinociceptive
67

 properties (Table 3). 

 

Chrysoeriol 

The bioactivities of CSE have been briefly described in recent 

reviews.
68,69

 CSE displays lipase inhibitory,
70

 antibacterial,
71

 anti-

inflammatory,
72-74

 anti-diabetic
75

 and neuroprotective
76

 activities 

(Table 3). 

 

Structure-Activity Relationships 

Acacetin  

Results of a structure-activity relationship (SAR) study showed that 

ACT had no 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical 

scavenging activity (IC50 value > 500 µM) while luteolin displayed 

strong activity (IC50 value of 17.8 µM).
77

 ACT and luteolin are 

flavones with hydroxyl groups at C5 and C7 of ring A (Figure 1). 

ACT has a methoxy group at C4ʹ while luteolin has hydroxyl groups at 

C3ʹ and C4ʹ of ring B. This indicated that the methoxy group of ACT 

attributed to its effective cytotoxic activity against cancer cells. A 

SAR study showed that linarin and linarin acetate with a rhamnose 

substitution at C7 displayed much weaker induction of apoptosis than 

ACT with a hydroxyl group at C7.
39

  

 

Chrysoeriol  

Unlike luteolin that displayed strong DPPH radical scavenging activity 

(IC50 value = 17.8 µM), CSE showed no such activity (IC50 value > 

500 µM).
77

 Results of a SAR study for inhibition of matrix 

metallopeptidase-9 (MMP-9) and cyclooxygenase-2 (COX-2) activity 

by the flavonoids showed that flavones had better inhibitory activities 

when compared to flavonols.
53

 CSE was found to be the most active 

followed by ACT, diosmetin and luteolin and apigenin (Figure 1). 

CSE with substitutions such as 5,7-dideoxychrysoeriol (lacking OH 

groups at C5 and C7) and 2,3-dihydrochrysoeriol (lacking the C2‒C3 

double bond), showed weaker inhibition of MMP-9 and COX-2 

activity than CSE.
53

 With regard to proliferation of HL-60 leukaemia 

cells by 5,7-dihydroxyflavones, diosmetin and CSE induced ~80% 

inhibition.
50

 The inhibitory effects of chrysin, apigenin, acacetin and 

luteolin were weaker. It was suggested that the combinations of 

hydroxyl and methoxy groups at the B ring influenced the inhibitory 

effects of the compounds on HL-60 cell proliferation. A recent study 

on CSE and its analogues showed that they inhibited both 

mesenchymal–epithelial transition factor (c-Met) and vascular 

endothelial growth factor receptor 2 (VEGFR2) that are involved in 

tumorigenesis of certain types of cancer.
78

 To address cancer drug 

resistance, further SAR analyzes are needed to guide structural 

optimizations.  

 

 

Table 2: Anti-Cancer Effects and Molecular Mechanisms of Chrysoeriol towards Different Cancer Cell Lines 
 

Cancer cell line & type  Anti-cancer effect and molecular mechanism of CSE Reference 

RPMI 8226 & KM3 

myeloma 

Inhibited cell proliferation by regulation of cell cycle and inhibition of the PI3K-AKT-mTOR pathway. 49 

A549 lung Exerted in vitro and in vivo cytotoxic effects through activation of autophagy, sub-G1 cell cycle arrest, cell 

migration and invasion inhibition via inhibition of the MAPK/ERK signalling pathway.  

51 

MDA-MB-231 breast Promoted cell cycle arrest at G2/M, and inhibited migration and invasion of cells by by down-regulation of 

MMP-9 and (COX-2) expression via the NF-κB pathway. 

53 

SW1990 pancreas Triggered cell apoptosis by inhibiting BCL-2, the anti-apoptotic protein. 54 

MCF-7 breast Inhibited DNA adduct formation with benzo[α]pyrene in cancer cells. 55 

MCF-7 breast Inhibited the formation of carcinogenic estrogen metabolite in cancer cells. 56 

MCF-7 breast Inhibited TNFα-induced CYP19 expression through the inhibition of ERK1/2-mediated EGR-1 expression. 58 

Abbreviations: BCL-2 = B-cell lymphoma 2, COX-2 = cyclooxygenase-2, CYP19 = cytochrome P450 19, EGR-1 = early growth response gene 1, 

ERK1/2 = extracellular signal-regulated kinase 1/2, MAPK = mitogen-activated protein kinase, MMP-9 = matrix metallopeptidase 9, mTOR = 

mechanistic target of rapamycin, NF-κB = nuclear factor-kappa B, PI3K = phosphoinositide 3-kinases, and TNFα = tumor necrosis factor alpha. 
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Table 3: Other Bioactivities and Mechanisms of Acacetin (ACT) and Chrysoeriol (CSE) 
 

Flavone  Bioactivity  Effect and mechanism Reference 

ACT Antibacterial ACT inhibited in vitro and in vivo virulence factor of Gram-positive Streptococcus pneumoniae 

by targeting spore-forming activity or pneumolysin. 

59 

 

 Antiviral ACT is a potent inhibitor of replication of HSV1. 60 

 Anti-diabetic ACT enhanced glucose uptake through insulin-independent GLUT4 translocation in L6 

myotubes. 

61 

 Anti- neuroinflammatory ACT attenuated LPS-induced neuroinflammation in mice by suppressing microglial activation 

and reducing neuronal cell death.  

62 

  ACT protected dopaminergic cells against MPTP-induced neuroinflammation in vitro and in 

vivo.  

63  

 Anti-arthritic ACT displayed anti-arthritic effects in FLS cells.  64 

 Anti-aging ACT promoted healthy aging in Caenorhabditis elegans by altering stress response. 65 

 Anti-Alzheimer ACT protected against Aß production (target of Alzheimer’s disease treatment) by reducing 

APP protein expression and BACE-1 activity, and inhibited APP synthesis that resulted in a 

decrease in the number of amyloid plaques. 

66 

 

 Antinociceptive ACT decreased visceral and inflammatory nociception, and prevented formalin-induced 

oedema in pain-related diseases. 

67 

 

CSE Anti-diabetic CSE exhibited anti-diabetic properties by inhibition of the activity of lipase. 70 

  CSE ameliorated hyperglycaemia in streptozotocin-induced diabetic rats by regulating 

carbohydrate metabolic enzymes. 

71 

 

 Antibacterial CSE exhibited antibacterial activity against nine pathogens at 40 µg per disc, and had a MIC 

value of 1.25 µg/mL against MRSA. 

72 

 

 Anti-inflammatory The inhibitory effects of CSE on AP-1 activation may be associated with its potent NO 

blocking and anti-inflammatory activity. 

73 

  CSE ameliorated TPA-induced skin inflammation in mice by inhibiting NF-κB and STAT3 

pathways. 

74 

  CSE ameliorated COX-2 expression in LPS-stimulated murine macrophages through NF-κB, 

AP-1 and MAPK regulation.  

75 

 

 Neuroprotective CSE mediated mitochondrial protection in MPP
+
-treated SH-SY5Y cells (a typical in vitro PD 

model) via PI3K/Akt pathway. 

76 

 

Abbreviations: Aß = ß-amyloid, AD = Alzheimer’s disease, AP-1 = activator protein 1, APP = amyloid precursor protein, BACE-1 = amyloid precursor 

cleaving enzyme, COX-2 = cyclooxygenase-2, FLS = fibroblast-like synoviocyte, GLUT-4 = glucose transporter type 4, HSV1 = herpes simplex virus 

type-1, LPS = lipopolysaccharide, MAPK = mitogen-activated protein kinase,  MIC = minimum inhibitory concentration, MPP
+ 

= 1-methyl-4-

phenylpyridinium iodide, MPTP = 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MRSA = methicillin-resistant Staphylococcus aureus, NF-κB = 

nuclear factor-kappa B, NO = nitric oxide, PD = Parkinson’s disease, PI3K = phosphoinositide 3-kinases, STAT3 = signal transducers and activators of 

transcription 3, and TPA = 12-O-tetradecanoylphorbol-13-acetate. 

 

 

Conclusion  

Flavonoids are a very large plant family of phenolic secondary 

metabolites. These compounds have a molecular structure consisting 

of two benzene rings A and B joined by a pyran ring C to form a 

benzo-pyrone (C6–C3–C6) moiety. The majority of flavonoids have 

the B ring linked in position 2 to the C ring, and they can be further 

divided into classes such as flavones, flavonols, flavanols and 

flavanones. Among the flavones, SAR studies have shown that the 

presence of the C2–C3 double bond and the 4-carbonyl group at ring 

C, the absence of the C3 hydroxyl group at ring C, and the pattern of 

hydroxylation at ring B are associated with enhanced cytotoxicity 

towards cancer cells. ACT and CSE are methylated flavones with 

hydroxyl groups at C5 and C7 of ring A. ACT has a methoxy group at 

C4' while CSE has a hydroxyl group at C4' and a methoxy group at 

C3'. Further research on the structural modifications of ACT and CSE 

is needed to synthesis novel derivatives with enhanced anti-cancer 

properties. Clinical research on ACT and CSE is warranted to evaluate 

their safety and chemopreventive efficacy when used alone or in 

combination with other chemotherapy agents.   
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