Antinociceptive and Antioxidant Activities of Methanol Extract and Fractions of the Root Bark of Callichilia stenopetala Stapf. (Family Apocynaceae) In Mice

Celestina I. Orabueze 1*, Sunday A. Adesegun 1, Herbert A. Coker 2

1Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos, Nigeria.
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos, Nigeria.

ARTICLE INFO

Article history:
Received 01 August 2017
Revised 01 September 2017
Accepted 03 September 2017
Published online 09 September 2017

ABSTRACT

The root of Callichilia stenopetala is used as chewing stick in the treatment of toothache and for oral hygiene in South-East Nigeria. The study assessed the antinociceptive and antioxidant activities of methanol root bark extract and fractions of C. stenopetala. Analgesic activity of methanol root bark extract of C. stenopetala and its fractions were evaluated using chemical (acetic acid and formalin) and thermal (hot plate and tail immersion) tests in mice. Moriphine sulphate, acetyl salicylic acid and diclofenac sodium at 4, 100 and 10 mg kg-1, respectively were used as standards. Antioxidant potential was evaluated using DPPH (1, 1-diphenyl-2-picrylhydrazyl) free radical scavenging activity and total phenolic content (TPC) assays. Oral acute toxicity was also evaluated. The extract (250 and 500 mg kg-1), ethyl acetate and aqueous fractions (200 mg kg-1) reduced acetic acid-induced writhing with percentage reduction of 65.14, 84.06, 93.27 and 50.63 %, respectively. The ethyl acetate fraction and methanol extract at 500 mg kg-1 significantly increased reaction times in tail immersion and hot plate tests. The formalin test results for the ethyl acetate fraction suggested involvement of central mechanism of pain inhibition. In DPPH scavenging assay and TPC, the extract showed good antioxidant potential, with most of the activity prominent in the polar fractions. At 8000 mg kg-1 no death of animal occurred. These findings suggested that C. stenopetala has pain alleviating effect which may be due to its antioxidant activity and this further substantiated the claimed traditional use of the plant in the management of acute toothache.

INTRODUCTION

Plants are important part of the culture of any group of people. Natural medicinal products have been sourced from these plants over centuries to combat health challenges because of their effectiveness. 1 Today, these plants have greater value globally as they play important role at various level of healthcare system because of their therapeutic properties. 2 High percentage (25 %) of conventional drugs on the shelves in the pharmacies have their origin from medicinal plant. 3 The current re-insurgence of interest in ethnomedicinal use of medicinal plants particularly the ones locally available and with long history in the management of diverse ailments has been argued to be as result of treatment failures associated with some orthodox drugs. 4, 5 Some of the wide range of ideal properties promoted for medicinal plant products include high target effectiveness, low cellular toxicity, low cost, easy biodegradability, abundant growth in endemic areas. 6, 7 Pain is a major clinical symptom that serves as warning signal to patients of abnormality in the body system. 8 It serve as unpleasant body response to tissue injury that could affect both the physical and emotional well-being. 9, 10 The mechanism of pain initiation involves activating sensorial neurons that transmit nociceptive stimulus at spinal and supra-spinal levels. 11 Treatment of pain involves chemical agents or devices that have the ability to block these signal pathways, both at central and peripheral levels. 11 Managing pain has always been problematic and challenging in spite of progress made in medical research during the past decades. Drugs that are currently used with different levels of efficacy in management of moderate to severe pain are opioids or non steroidal antiinflammatory drugs (NSAID) 12 but they come with limitations. Opioids, though useful in management of chronic and acute pain, exhibit a wide range of potential side effects, particularly addicting effect. 12 Studies have shown that NSAIDs are significantly associated with risk of gastrointestinal bleeding. 13 Other possible side effects include respiratory depression, decreased mental capacity, addiction, etc. 13 This stirs the need for continuous search for effective pain relieving agents with little or no side effects as therapeutic alternative to current medications. Medicinal plants already in use as folklore medicine need to be scientifically investigated to ascertain their level of effectiveness and safety. 13 Pain-killing effects of antioxidants was investigated by Jensen and co-researchers and they reported an observed correlation between pain threshold and poor antioxidant status. 14 Robert Stephens, has shown that free radicals may contribute to severity of chronic pain. 15 The two researches directly agreed that the accumulation of free radicals in the body could further damage already injured tissue and thus indirectly increase perceived pain. 15 The same observation was also reported by Rokytal et al. 16 of increased lipoperoxidation due to painful stimulation and ability of antioxidants in combination with analgesic being able to decrease levels of oxidative markers and pain. Thus, administration of antioxidants in pain treatment may decrease the doses of analgesics needed to control perceived pain and also prevent the negative impact of reactive oxygen species on nociception. 14, 16 Callichilia stenopetala Stapf (family Apocynaceae), known locally as “Utu nkita” has been used by traditional medical practitioners in the South-Eastern part of Nigeria as a remedy for various ailments including different
types of “re-current” fever and problems associated with poor oral hygiene. Root of *C. stenopetala* has been used as a chewing stick in the region for cleansing purpose and for its medicinal value in toothache therapy by traditional practitioners. Scientific data on the plant is highly limited. The present study was undertaken to evaluate the analgesic and antioxidant activities of methanol root bark extract of *C. stenopetala* in mice.

Materials and Methods

Experimental animals

Healthy Swiss albino mice of both sexes (20 - 22 g) were used for the study. They were maintained at the animal house of the University of Lagos, Ibadan, Nigeria. The animals were housed in groups of 5 animals in clean polypropylene cage with wood shavings as bedding and fed on commercial animal feed and allowed free access to clean fresh water *ad libitum*. All experimental protocols were in compliance with internationally accepted principles for laboratory animal use and care. The Research Grants and Experimentation Ethics Committee of College of Medicine University of Lagos, Nigeria approved the protocol with ID number RGEEC/22/2015.

Collection of plant material and identification

The fresh root barks of *C. stenopetala* plants were procured locally at Ibadan, Nigeria. The animals were housed in groups of 5 animals in clean polypropylene cage with wood shavings as bedding and fed on commercial animal feed and allowed free access to clean fresh water *ad libitum*. All experimental protocols were in compliance with internationally accepted principles for laboratory animal use and care. The Research Grants and Experimentation Ethics Committee of College of Medicine University of Lagos, Nigeria approved the protocol with ID number RGEEC/22/2015.

The fresh root barks of *C. stenopetala* plants were procured locally at Ibadan, Nigeria. The animals were housed in groups of 5 animals in clean polypropylene cage with wood shavings as bedding and fed on commercial animal feed and allowed free access to clean fresh water *ad libitum*. All experimental protocols were in compliance with internationally accepted principles for laboratory animal use and care. The Research Grants and Experimentation Ethics Committee of College of Medicine University of Lagos, Nigeria approved the protocol with ID number RGEEC/22/2015.

Phytochemical screening

The crude extract was screen to identify phytoconstituents present in the extract using standard phytochemical screening methods. Each test was qualitatively expressed as negative (-) or positive (+).

Oral acute toxicity test

The safety of the crude extract was evaluated by determining the oral acute toxicity using a modified Lorke’s method. Each test was carried out on 6 mice per group (1 negative control group and 4 treated groups). The control group received 0.2 mL of 5% Tween 80 and the treated groups were given 0.2 mL single oral dose of the extract prepared in 5% Tween 80 (1000, 2000, 4000 and 8000 mg kg⁻¹ respectively). The mice were allowed to feed *ad libitum*, kept under continuous observation for first 4 h followed by regular intervals for 24 h up to 7 days for any mortality or behavioural changes. Behavioural changes were observed for include but not limited to, paw licking, salivation, loss of appetite, hair erection, convulsions, stretching of the entire body, weakness and respiratory distress.

Analgesic Study

Acetic acid-induced writhing in mice

Non-narcotic analgesic activity of the test extract and fractions were investigated as described by Dar et al. with some modifications. Mice were randomly divided into 5 groups of 5 mice each. The negative and 2 positive control groups received 0.2 mL of 5% Tween 80, acetyl salicylic acid (100 mg kg⁻¹) and diclofenac sodium (10 mg kg⁻¹) orally, respectively. The treatment groups received 250 and 500 mg kg⁻¹ orally of the plant extract respectively. Thirty minutes after test extract and standard drugs administration, 0.7% (v/v) acetic acid (0.1 mL/10 g body weight) was administered intraperitoneal to all the mice to induce the abdominal writhing (abdominal contraction or elongation of the body with stretching of the hind limb). Analgesic activity was assessed by counting the number of abdominal constrictions or writhes induced by the acetic acid for 20 min and recorded. A significant reduction of writhes in test animals compared to those in the negative control group was considered as a positive antinociceptive response.

The same procedure was repeated for the hexane, chloroform, ethyl acetate and aqueous fractions at single dose of 200 mg kg⁻¹ each and 5 animals per group.

Hot plate test

Hot plate test was used to estimate the latency of responses as described by Woolfe and MacDonald with some modifications. Swiss albino mice of either sex were tested before administration of drugs to obtain the baseline and those that did not respond within 60 seconds were left out of the experiment. Twenty-five (25) mice were divided into 5 groups of 5 animals each. The animals were placed gently on the surface of hot plate heated to and maintained at 50 ± 0.5°C. The pain reaction time (PRT) or response latency period was recorded which represented the time between placement and shaking or licking of the paws or jumping. A cut off time of 15 seconds was followed to avoid any tissue damage to the animal. Two doses of the extract (250 and 500 mg kg⁻¹) dissolved in 5% Tween 80 were given orally to the mice 30 minutes before the test. Likewise, the control groups were pretreated with vehicle (0.2 mL of 5% Tween 80 solution), diclofenac sodium (10 mg kg⁻¹) and morphone sulphate (4 mg kg⁻¹) intraperitoneally, 30 min before the test. Analgesic activity was expressed as the increase in response time with respect to negative control. The observations and record were made at 0, 30, 60, 90, 120 and 180 min following administration of drugs.

The same study was repeated for the n-hexane, chloroform, ethyl acetate and aqueous fractions at single dose of 200 mg kg⁻¹ each and 5 animals per group.

Tail-immersion test

The tail-immersion test was used to determine the central antinociceptive response of the test samples. The method is based on the observation that morphine-like drugs selectively prolong the reaction time of tail withdrawal reflex in animals. Sixty mice were assigned to 12 groups of 5 mice each and fasted for 12 h. The animals were given different doses (250 and 500 mg kg⁻¹ crude extract; 100 and 200 mg kg⁻¹ of the fractions) orally, 0.2 mL of 5% Tween 80 solution (negative control) and morphine sulphate 4 mg kg⁻¹ (positive control), 30 min prior to the immersion of the distal end of the tail of each mice (2 - 3 cm) into hot water maintained at 50 ± 1°C. The reaction time (in seconds) was the time taken between tail immersion and deflection of the tail due to pain. The maximum reaction time was fixed at 20 sec to prevent tail tissue injury. Time taken for the animal to withdraw the tail was taken as the indicator of antinociception and was recorded at 60, 120, 150, and 180 min after the administration of morphine and test samples. Maximum possible effect was calculated.

Formalin test

Formalin test is a tonic pain model that is widely used in the assay of antinociceptive activity. The antinociceptive activity of the ethyl acetate fraction of *C. stenopetala* was evaluated as described by Pandurangan et al. Five mice per mouse housed in transparent cages (observation chambers), were administered with different doses of test fraction (100 and 200 mg kg⁻¹ ethyl acetate fraction), morphine (4 mg kg⁻¹) and 5% Tween 80. After 15 min, 20 μL formalin (2.5%) was injected into the dorsal surface of the left hind paw. The mice were observed for 30 min after the injection of formalin and duration of paw licking recorded as early phase (0 – 5 min) and late phase (15 – 30 min). The percentage inhibition of paw licking was calculated.

Evaluation of Antioxidant Activity

DPPH free radical scavenging assay

Scavenging activity against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) radical was evaluated as described by Mensor et al. with slight modification. Various concentrations (1, 0.8, 0.5, 0.2, 0.1 and 0.05 mg mL⁻¹) of sample extracts in methanol were prepared. To 1 mL of each solution, 3 mL of methanol was added and then 1 mL of a 1 mM DPPH in methanol was added to make up to 5 mL. After 30 min of protection from light at room temperature, the absorbance of the test and blank samples were recorded at 517 nm on a spectrophotometer. The experiment was...
repeated with ascorbic acid (0.005, 0.01, 0.02, 0.05, 0.1, 0.2 mg mL⁻¹) which served as positive control. All determinations were carried out in triplicates. The same procedure was repeated using blank solution DPPH without the extracts. The procedure was repeated for 0.2 gm mL⁻¹ of the various fractions (hexane, chloroform, ethyl acetate and aqueous) in methanol and their absorbance compared with that of ascorbic acid. The decrease in absorbance was then converted to percentage scavenging activity (%SA) using the formula:

$$\text{DPPH radical scavenging activity (\%SA)} = \left(1 - \frac{A_{\text{sample}}}{A_{\text{control}}} \right) \times 100$$

Where: A_{sample} = Absorbance of the blank solution

A_{control} = Absorbance of the test (extract) solution or the standard (ascorbic acid)

Determination of the Total Phenolic Content (TPC)

The total phenolic content of methanol extract was determined with the modified Folin-Ciocalteu reagent.²⁹ For the preparation of the gallic acid calibration curve, 1 mL aliquots of 0.005, 0.01, 0.02, 0.05, 0.1 and 0.2 mg mL⁻¹ ethanolic gallic acid solutions were mixed with 5 mL Folin-Ciocalteu reagent (diluted tenfold) and 4 mL 75 g/L sodium carbonate. The absorbance was read after 1 h at 610 nm and the calibration curve drawn. 1 mL ethanolic extract of the extract was mixed with the same reagent as described above and after 1 h, the absorbance was measured for the determination of the total plant phenolic content. All determinations were performed in triplicates. The blank solution was made up of 5 mL Folin-Ciocalteu reagent, 4 mL sodium carbonate solution and 1 mL ethanol. The total phenolic content was expressed as milligrams of gallic acid equivalent (GAE) per gram of extract calculated thus:

$$T = CV/M$$

Where T = total phenolic content, mg g⁻¹ of extract, in GAE

$C =$ the concentration of gallic acid in the plant extract established from the calibration curve (mg mL⁻¹)

V = the volume of the extract (ml)

$M =$ the weight of ethanol extract (g)

Statistical Analysis

The data were expressed as mean ± S.E.M and were evaluated using one-way analysis of variance. $P < 0.05$ was considered significant.

Results and Discussion

Pain is generally induced by tissue damage, infections, inflammation, malignancy and other disease-states or condition. In this study, chemical (acetic acid, forminal) and thermal (hot plate, hot water) methods were employed to induce pain. Acetic acid induced nociception was used to initiate formation of pro-inflammatory mediators that excite pain nerve endings while thermal-induced nociception (tissue damage) initiates non-inflammatory, acute nociceptive input and is one of the models for inflammatory pain by interfering with the formation of pain mediators at the peripheral target sites where prostaglandins and bradykinin are proposed to play a significant role in the pain process.³⁴ Acetylsalicylic acid and diclofenac sodium are peripheral acting analgesic.³⁵ Active phytoconstituents of *C. stenopetala* root bark extract and its polar fractions may have exerted the observed peripheral antinociceptive action by inhibiting the synthesis, release and/or antagonizing the action of pain mediators at the target sites. The percentage in the number of reduction in the abdominal reflex is an indication of the degree of the analgesic effectiveness of the medicinal plant in the acetic acid writhing reflex model.³⁵ To assess the central antinociceptive potential observed in the polar fractions, the hot plate reaction is based on supra-spinal reflex, involving higher brain functions while the tail immersion indicates the spinal reflex to nociceptive stimuli.³⁶

The hot plate test has selectivity for opioid derived centrally mediated analgesia and an increase in the pain reaction time indicates the level of antinociception of the test substances.³⁷,³⁸ The longer the elevation in latency, the better the test agent as an analgesic agent³⁹,⁴⁰ Marked elevation in latency or mean post reaction time (PRT) was observed in the animals treated with test extract at 500 mg kg⁻¹, morphine and diclofenac sodium during the hot plate test compared to control group, 5 % Tween 80 (Figure 1). At 200 mg kg⁻¹ the polar fractions (ethyl acetate and aqueous) showed improved elevation in latency (Figure 2). Between 50 and 90 min the analgesic effects of these polar fractions were significant compared to the negative control (Figure 2). Thus, ethyl acetate and the aqueous fractions exhibited significantly superior pain reducing effect than the non-polar fractions (hexane and the chloroform fractions) but less compared to the standard drugs (Figure 2).

The result of the hot plate test also indicated that the root bark extract of *C. stenopetala*, has anti-nociceptive effect which was lower than the ethyl acetate and aqueous fractions (polar fractions).³⁵ The increased antinociceptive potential observed in the polar fractions may be due to increase in concentration of bioactive compound(s) in the fractions. The protection rank exhibited by the fractions is as follows ethyl acetate and aqueous fractions (polar fractions). The increased antinociceptive potential observed in the polar fractions may be due to increase in concentration of bioactive compound(s) in the fractions. The protection rank exhibited by the fractions is as follows ethyl acetate and aqueous fractions (polar fractions).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose (mg kg⁻¹)</th>
<th>No. of writhing</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 % Tween 80</td>
<td>0.2 mL</td>
<td>100.4 ± 1.03*</td>
<td>74.00</td>
</tr>
<tr>
<td>Acetyl salicylic acid</td>
<td>100</td>
<td>26.1 ± 0.27*</td>
<td>67.20</td>
</tr>
<tr>
<td>Diclofenac sodium</td>
<td>10</td>
<td>18.00 ± 1.2*</td>
<td>82.07</td>
</tr>
<tr>
<td>Extract</td>
<td>250</td>
<td>35 ± 0.43*</td>
<td>65.14</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>16 ± 0.57*</td>
<td>84.06</td>
</tr>
<tr>
<td>Hexane Fraction</td>
<td>200</td>
<td>82.61 ± 0.20</td>
<td>17.72</td>
</tr>
<tr>
<td>Chloroform fraction</td>
<td>200</td>
<td>97.86 ± 0.24</td>
<td>2.53</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>200</td>
<td>6.76 ± 0.33*</td>
<td>93.27</td>
</tr>
<tr>
<td>Aqueous fraction</td>
<td>200</td>
<td>49.57 ± 0.46*</td>
<td>50.63</td>
</tr>
</tbody>
</table>

Each data represents mean ± SEM; n = 5

* $P < 0.05$ is significant when compared with the vehicle (5 % Tween 80)
The effect of ethyl acetate fraction at 200 mg kg\(^{-1}\) at 180 min was comparable to the reference drug, morphine (4 mg kg\(^{-1}\)). Increase in stress tolerance ability of animals in hot plate and tail immersion models indicates the possible involvement of higher center, possibly may have been mediated through central nervous system.\(^{25}\) Morphine exhibited significant and good analgesic effects in both the hot plate (supra spinal) as well as the tail immersion (spinal) test, while C. stenopetala root bark extract (250 and 500 mg kg\(^{-1}\)) and its active fractions (ethyl acetate > aqueous) produced statistically significant but lesser degree of antinociceptive response to that of morphine in both test suggesting that the plant extract may act as mild narcotic analgesic.

Inhibition of acetic acid-induced writhing can detect non-analgesics such as antihistamines, muscle relaxants, monoamine oxidase inhibitors.\(^{26}\) Therefore, formalin test was employed to confirm the antinociceptive effect of the sample extract and its active fractions. Formalin test encompasses neurogenic, inflammatory and central mechanisms of nociception.\(^{43}\) The first phase of the formalin induced hind paw licking is selective for centrally acting analgesics such as morphine and represents direct chemical stimulation of the sensory nerve fibres (neurogenic). The first phase is characterized by an immediate acute pain occurring within the first ten (0 - 10) minutes after formalin injection. The second phase of formalin-induced hind paw licking is peripherally mediated and represents the events of inflammatory pain and mechanisms of central sensitization (15 - 30 min).\(^{44}\)

Thus, the test postulates the site and the mechanism of action of the analgesic.\(^{45}\) Central analgesic drugs like narcotics (morphine) inhibits both phases, whereas peripheral acting analgesics affects mostly the second or late phase response. Animals treated with morphine (4 mg kg\(^{-1}\)) significantly reduced formalin-induced nociception in both phases with 62.44 % and 63.90 % (\(p < 0.05\)) for first phase and second phase respectively as shown in Table 3. The ethyl acetate fraction produced inhibition at both phases when compared to negative control group. At neurogenic phase (0 – 5 min), 39.70 and 55.99 % of licking time inhibition was recorded for 100 and 200 mg kg\(^{-1}\) of ethyl acetate fraction respectively. While 42.93 and 60.64% inhibition was observed for 100 and 200 mg kg\(^{-1}\) of test fraction respectively at inflammatory phase (15 – 30 minutes) (Table 3).

The second phase is characterized by an immediate acute pain occurring within the first ten (0 - 10) minutes after formalin injection. The second phase of formalin-induced hind paw licking is peripherally mediated and represents the events of inflammatory pain and mechanisms of central sensitization (15 - 30 min).\(^{44}\) Thus, the test postulates the site and the mechanism of action of the analgesic.\(^{45}\) Central analgesic drugs like narcotics (morphine) inhibits both phases, whereas peripheral acting analgesics affects mostly the second or late phase response. Animals treated with morphine (4 mg kg\(^{-1}\)) significantly reduced formalin-induced nociception in both phases with 62.44 % and 63.90 % (\(p < 0.05\)) for first phase and second phase respectively as shown in Table 3. The ethyl acetate fraction produced inhibition at both phases when compared to negative control group. At neurogenic phase (0 – 5 min), 39.70 and 55.99 % of licking time inhibition was recorded for 100 and 200 mg kg\(^{-1}\) of ethyl acetate fraction respectively. While 42.93 and 60.64% inhibition was observed for 100 and 200 mg kg\(^{-1}\) of test fraction respectively at inflammatory phase (15 –

Table 2: Effect of methanol extract of C. stenopetala on tail immersion test in mice

<table>
<thead>
<tr>
<th>Treatment/ Drug</th>
<th>Dose (mg/kg)</th>
<th>Pre-treatment RT (%)</th>
<th>60</th>
<th>120</th>
<th>150</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.2 mL</td>
<td>3.15 ± 0.01</td>
<td>3.5 ± 0.01</td>
<td>3.5 ± 0.01</td>
<td>4.0 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>Crude extract</td>
<td>250</td>
<td>3.5 ± 0.11</td>
<td>4.17 ± 1.27</td>
<td>5.25 ± 0.68</td>
<td>6.28 ± 1.31</td>
<td>6.32 ± 1.06</td>
</tr>
<tr>
<td>Hexane fraction</td>
<td>500</td>
<td>3.00 ± 1.05</td>
<td>4.22 ± 1.53*</td>
<td>6.32 ± 1.36*</td>
<td>7.13 ± 0.67*</td>
<td>8.21 ± 1.19*</td>
</tr>
<tr>
<td>Chloroform fraction</td>
<td>100</td>
<td>2.5 ± 0.63</td>
<td>3.7 ± 1.13</td>
<td>4.13 ± 2.01</td>
<td>4.56 ± 1.53</td>
<td>5.06 ± 1.21</td>
</tr>
<tr>
<td>Ethyl acetate fraction</td>
<td>200</td>
<td>3.50 ± 0.74</td>
<td>3.8 ± 0.83</td>
<td>4.86 ± 2.07</td>
<td>4.93 ± 1.17</td>
<td>6.03 ± 1.24</td>
</tr>
<tr>
<td>Aqueous fraction</td>
<td>3.50 ± 1.36</td>
<td>3.27 ± 1.25</td>
<td>3.84 ± 1.41</td>
<td>4.37 ± 0.08</td>
<td>4.56 ± 1.02</td>
<td></td>
</tr>
<tr>
<td>Ethyl acetate fraction</td>
<td>3.50 ± 1.21</td>
<td>4.27± 1.52</td>
<td>4.43 ± 1.03</td>
<td>4.72 ± 1.05</td>
<td>5.22 ± 0.67</td>
<td></td>
</tr>
<tr>
<td>Morphine</td>
<td>4</td>
<td>4.00 ± 0.89</td>
<td>5.5 ± 1.20</td>
<td>6.24 ± 2.13</td>
<td>7.86 ± 1.44*</td>
<td>8.14 ± 1.64*</td>
</tr>
</tbody>
</table>

Table 3: Effect of ethyl acetate fraction of C. stenopetala root bark on the licking time of mice in formalin test

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Dose mg/kg</th>
<th>Licking time (min)</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-5</td>
<td>15-30</td>
</tr>
<tr>
<td>5% Tween 80</td>
<td>0.2 mL</td>
<td>57.06±1.50</td>
<td>69.62±1.51</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>100</td>
<td>34.41±2.17*</td>
<td>39.73±2.21*</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>200</td>
<td>25.11±1.15*</td>
<td>27.42±0.87*</td>
</tr>
<tr>
<td>Morphine</td>
<td>4</td>
<td>21. 43 ± 3.50*</td>
<td>25.13±1.24</td>
</tr>
</tbody>
</table>

Values are mean ± SEM; (n=5). * Significant difference at \(p < 0.05\) compared to control.

Figure 1: Effects of the methanol root bark extract of C. stenopetala on latency time in the hot plate test. *Significant difference at \(p < 0.05\) when compared to control.
30 min) of formalin-induced licking test when compared with the negative control (5 % Tween 80). The suppression of neurogenic and inflammatory pains by ethyl acetate fraction in this study might imply that it contains active analgesic principle that may be acting both centrally and peripherally similar to the reference drug morphine. However, the activity of ethyl acetate fraction was higher in the inflammatory phase than the first phase, confirming the high percentage of writhing inhibition observed in acetic acid induced writhing test (93.27 %) compared with its central acting potential (hot plate and tail immersion test). In the hot plate test, the effect was not long lasting compared to morphine and diclofenac sodium (Figure 2).

DPPH (1, 1-diphenyl-2-picrylhyrazyl) radical scavenging assay is an effective and widely used method for evaluation of the antioxidant activities of plants. The percentage (%) scavenging of DPPH radical was found to be concentration-dependent both both extract and the standard (ascorbic acid). The IC50 values of extract and ascorbic acid were calculated to be 7.54 µg mL−1 and 4.87 µg mL−1, respectively (Figure 3). The result of this study reveals that DPPH radical scavenging activity resides more in the polar fractions than the non-polar fractions as compared with a known standard, ascorbic acid (Figure 4).

The free radical scavenging activities of the active polar fractions (ethyl acetate and aqueous) may be as a result of its phenolic status (Figure 5).

Boye et al. had suggested that a relationship exist between antioxidant activity and antinociception. Free radicals, ROS (reactive oxygen species) have been reported to trigger second messenger system involved in sensitization of neurons and spinal glial cells, which in turn stimulates pain. Thus an increase in the antioxidant in the body system to mop up the free radicals will likely reduce pain perception.

Antinociceptive agent having antioxidant effects may likely increase pain threshold and advantage in pain management. In line with this observation, ethyl acetate and aqueous fractions have the highest DPPH free radical scavenging activity (Figure 4) and analgesic effect (Tables 1 and 2, Figure 2). The antioxidant effects of C. stenopetala may be responsible or has contributing effects to its antinociceptive activity.

DPPH assay is a used for evaluating the antioxidant activity of plant extracts.
play role in analgesic activity primarily by their scavenging activities.54, 55

The study showed that both the central and the peripheral analgesic effects of the test extract seem to be more pronounced or significant in the polar fractions (ethyl acetate > aqueous) which may be due to its polyphenolic content. The total phenolic content of the extract measured using Folin-Ciocalteau reagent was calculated as 70.00 mg g⁻¹ in terms of gallic acid. No lethal effect was observed within 24 h after the administration of the extract at the doses used, even at the highest dose tested (8000 mg/kg). Therefore, the median lethal dose (LD₅₀) of the extract is greater than 8000 mg kg⁻¹. Pain control assessing data from C. stenopetala crude root bark extract and its polar fractions indicate increase in pain threshold thereby justifying its use by herbalists for treatment of toothache.

Conclusion

On the basis of these findings, it may be inferred that methanol root bark extract and polar fractions of C. stenopetala exhibit antinociceptive activities and may be acting through both central and peripheral nociceptive mechanisms. They also have DPPH free radical scavenging activities which may contribute to its effectiveness in the management of pain. The study also corroborates the traditional and folkloric use of C. stenopetala in treatment of toothache.

Conflict of interest

The authors declare no conflict of interests.

Authors’ declaration

The authors hereby declare that the work presented in this article are original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgements

The authors are grateful to Mr. Ozioko of Bioresources Development and Conservation Programme (B.D.C.P), Nsukka, Enugu State (retired staff Department of Botany, University of Nigeria Nsukka, Enugu state) and Mr. Duramola, a curator, former staff of University of Lagos, Department of Botany herbarium, Faculty of Science for identification and authentication of the plant. We also thank Mr. Ota and Department of Physiology, College of Medicine, University of Lagos, Lagos, for providing technical support through the course of the research.

References

