In vitro Diosgenin Augmentation in Microtubers of Dioscorea floribunda (M. Martens & Galeotti)

Joy I. Odimegwu1, 2, Ritesh K. Yadav1, Steve O. Ogbonna2, Olukemi A. Odukoya2, Neelam S. Sangwan1*

1CSIR-Central Institute for Medicinal and Aromatic Plants, CIMAP, Lucknow, India.
2Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine Campus, University of Lagos, Lagos, Nigeria.

ARTICLE INFO

Article history:
Received 29 June 2017
Revised 06 August 2017
Accepted 08 August 2017
Published online 09 August 2017

Keywords:
Dioscorea floribunda, Diosgenin, Naphthalene acetic acid, Microtuberingzation

ABSTRACT

Medicinal yam Dioscorea floribunda is known to possess pharmacologically active diosgenin, a steroidal sapogenin, usually found in greater quantities in the tubers. It is used for the commercial synthesis of cortisone, pregnenolone, progesterone, and other steroid products. Diosgenin is also implicated in reduction of serum cholesterol, estrogenic activity and anticancer effects. In the present study, multiple shoots were initiated from somatic embryos and microtubering was achieved in liquid media. In optimised conditions, we observed an improved diosgenin production of about 3.5% on dry weight basis, too little to meet current demands. Dioscorea are plants of very high value in the tropics and semi tropical areas of the world due to their medicinal uses and for food and medicines. To date, diosgenin and related steroidal sapogenins were commercially obtained from the tubers of various Dioscorea species. Medicinal yam Dioscorea floribunda is known to possess pharmacologically active diosgenin, a steroidal sapogenin, usually found in greater quantities in the tubers. It is used for the commercial synthesis of cortisone, pregnenolone, progesterone, and other steroid products. Diosgenin is also implicated in reduction of serum cholesterol, estrogenic activity and anticancer effects. In the present study, multiple shoots were initiated from somatic embryos and microtubering was achieved in liquid media. In optimised conditions, we observed an improved diosgenin production of about 3.5% on dry weight basis, too little to meet current demands.

Introduction

Dioscorea, monocotyledonous tuber plant of the family Dioscoreaceae with about 600 species recorded so far, is commonly referred to as yam. Diosgenin (Figure 1) is a steroidal sapogenin possessing estrogenic and antitumor properties. The pharmacological property of a steroidal saponin has been described including their hypocholesterolemic, anti diabetic and antioxidant activities. Diosgenin (Figure 1) is biosynthesized in plant Dioscorea. Different species originate from different parts of the world; Africa, Asia, the Caribbean’s South America and the South Pacific islands etc. The dominant zone for yam production in the world is in West Africa. Different species of Dioscorea found in India are Dioscorea deltoidea, Dioscorea prazeri, Dioscorea floribunda and Dioscorea composita. The amount of Diosgenin naturally present in field grown yam species e.g. Dioscorea floribunda is very little, about 3-3.5% on dry weight basis, too little to meet current demands. Dioscorea are plants of very high value in the tropics and semi tropical areas of the world due to their medicinal uses and for food and medicines. To date, diosgenin and related steroidal sapogenins were commercially obtained from the tubers of various Dioscorea species. Herbal medicines are in great demand in the developed as well as developing countries for primary healthcare because of their wide biological activities, higher safety margins and lesser costs. For past few decades, compounds from natural sources have been gaining importance because of the vast chemical diversity that they offer. Dioscorea species leaves were also reported for the presence of multicellular glandular trichome and eugenol rich essential oil from the glandular trichome of Dioscorea species.

There are several reports available in literature suggesting diosgenin quantification in in vitro grown callus of Dioscorea species. The callus and suspension cultures derived from Dioscorea deltoidea can accumulate the steroid diosgenin up to a level exceeding 1% of the dry weight and the yield can be increased substantially by feeding the cultures with the precursor cholesterol. Diosgenin accumulation in callus or undifferentiated tissue cultures of Dioscorea seed have been reported by Staba et al. Tissue cultures of callus obtained from seeds of various Dioscorea species have been established, including the preferred D. deltoidea as well as D. composita, D. spiculiflora and D. floribunda. D. deltoidea tissue cultures have been found to yield diosgenin in amounts far in excess of the amounts obtained from tissue cultures of the other Dioscorea species. It has been reported that diosgenin production was improved by as much as 72% compared to control cultures by addition of autoclaved mycelia of non-host specific fungi to cell suspension cultures of Dioscorea deltoidea. While phytoalexin elicitor’s lamarin, arachidonic acid and chitin added to D. deltoidea cultures had no stimulating effect on the diosgenin level. In the present report, diosgenin quantification in tissue cultured rhizoids of D. floribunda is reported for the first time. Plantlet regeneration in vitro for vegetative propagation of some economically important Dioscorea species has been achieved using nodal cuttings. Tissue culture is recognised as a powerful tool for plant regeneration as production is independent of season, climate or weather and one could develop true type plants, clones of the mother plant or with hormonal manipulations, from nodal explants increasing or decreasing phytomolecule levels. Tissue culture techniques are well established in yam in the quest to break yam dormancy and increase size of tubers. These studies provide a logical method for investigating the role of specific plant growth regulators (PGRs) in yam development with regards to morphogenesis and rhizogenesis. Naphthalene acetic acid (NAA) is a synthetic plant hormone in the auxin family and is a rooting agent. Benzyladenine (BAP) is cytokinin that elicits plant growth and development responses by stimulating cell division. In plant tissue culture Indole-3-butyric acid (IBA) and other auxins are used to initiate root formation in vitro in micropropagation protocol. Kinetin is a type of cytokinin, that promotes cell division. The objective of the present...
The calibration plots in the calibration graph. The five different combinations (A1 to A5) of kinetin, IBA, BAP and NAA. A1 treatment was composed of rooting medium supplemented with 0.5 mg L⁻¹ kinetin, 1 mg L⁻¹ IBA, 1 mg L⁻¹ BAP and 2 mg L⁻¹ NAA. A5 treatment was composed of 1/2 strength MS medium, Kinetin 0.5 mg L⁻¹ and NAA 2 mg L⁻¹. The days to rooting and microtuberization was examined for concentration range 0.01–0.1 mg mL⁻¹. The calibration curves as kσ/S, where k = 3.3 for LOD, and k = 10 for LOQ, σ is the standard deviation of the Y-intercept of regression line and S is the slope of the calibration curve. Both of LOD and LOQ were expressed by the detection quantity (µg) of diosgenin in the mentioned methods. LOD and LOQ were experimentally verified by six injections of diosgenin at the LOD and LOQ concentrations.

The procedure was repeated three to four times. The dried extract was reconstituted in 1 mL of HPLC grade methanol and centrifuged at 12,000 x g to remove the impurities. The supernatant was filtered through the 0.2 µ filter for HPLC analysis.

Calibration Solution
The linear detection range for diosgenin was established by preparing standard stock solutions in HPLC grade methanol. Aliquots of these solutions were diluted and analyzed to determine method linearity. Limit of quantification (LOQ) values were estimated from serial dilution and analyzed. Calibration ranges for diosgenin 0.01 to 0.1 mg mL⁻¹ were prepared. Triplicate 20 µL injections were made for each concentration of standard solution to see the reproducibility of the detector response at each concentration level. The peak area of diosgenin was plotted against the concentration to obtain the calibration graph. The ten concentrations of diosgenin were subjected to regression analysis to calculate calibration equation and correlation coefficients.

Procedure for HPLC Analysis
The analysis was performed with an LC system consisting of Waters HPLC system which was equipped with a 515 programmable pump, in-line degasser AV, 717plus auto sampler, and 2996 photodiode array detector. The system was controlled and data analysis was performed with Empower software. All the calculations concerning the quantitative analysis were performed with external standardization by measurement of peak area. A reversed phase column (Nova Pack, C18, 4 µm, 150 mm X 3.9 mm) was used for separation by using mobile phase of methanol-water (80:20, v/v) at a flow rate of 0.80 mL min⁻¹ at 25°C. Changes in absorbance at 240 and 400 nm were recorded, and spectra from 190 to 400 nm were recorded on-line for peak identification. The peak area was calibrated to diosgenin content with a standard.

Results and Discussion
In order to examine the effect and efficiency of BAP and kinetin alone and in combination on shoot induction of D. floribunda explants, different concentration and combination of BAP and kinetin (Table 1) supplemented in MS medium was used for shoot induction. Shoots developed in each combination of BAP and kinetin as a result (Plate 1) using the following treatment plan, MS medium supplemented with cytokinin: BAP (0.5, 1, 2 and 4 mg L⁻¹) and kinetin (0.5, 1, 2 and 4 mg L⁻¹). Budding in treatment 1 to 4 was observed after 5 days post-inoculation (Plate 2A, B, C and D) while by day 10 budding showed in all the remaining treatment. 100% budding was observed in treatment 4 (BAP 4 mg L⁻¹ and KIN 1 mg L⁻¹). The percentage of budding for trt 1 (BAP 1 mg L⁻¹), trt 2 (BAP 2 mg L⁻¹), trt3 (BAP 3 mg L⁻¹) was 50.00%, 62.50% and 75% respectively. In combination of hormone (BAP and Kinetin), the highest percentage of budding was 62.50% and was observed in trt 7 (BAP 5 mg L⁻¹ and KIN 1 mg L⁻¹), trt 8 (BAP 4 mg L⁻¹ and KIN 1 mg L⁻¹), trt11 (BAP 3 mg L⁻¹ and KIN 2 mg L⁻¹), and trt 12 (BAP 4 mg L⁻¹ and KIN 2 mg L⁻¹).
KIN treatment alone (trt 21 to trt 24) was found to be the least efficient in budding. The percentage of budding for Trt 21 (KIN 1 mg L⁻¹) was 0%, for trt 22 (KIN 2 mg L⁻¹) and trt23 was (KIN 3 mg L⁻¹) was 25.00% and for trt 24 (KIN 4 mg L⁻¹) was 37.50% (Table 1). Shoots were also induced on shoots of A2 (IBA 1 mg L⁻¹) treated plant but necrosis appeared on the shoot (Plate 2F) after some time. Subsequently, all future experiments were carried out in liquid media (without agar).

Micro-tubers were generated in solid and liquid medium supplemented with NAA 2 mg L⁻¹ and Kinetin 0.5 mg L⁻¹ (Plate 3, Plate 4A and B). Microbacterization was achieved more efficiently in liquid media in comparison with the solid. Induced shoot from trt4 (4 mg L⁻¹) was excised and used for shoot elongation and root induction by supplementing MS medium with hormone BAP, kinetin, IBA, and NAA alone or in different combination. The effect of applied hormone on plant morphology and rooting system was visualised clearly in plate 5 (A1–A5). Treatment A2 (NAA 1 mg L⁻¹) and A3 (IBA 1 mg L⁻¹) appeared most efficient in shoot and root induction while treatment A1 (IBA 1 mg L⁻¹; KIN 0.5 mg L⁻¹; BAP 1mg L⁻¹) appeared least efficient. Treatment A4 (NAA 2 mg L⁻¹; KIN 0.5 mg L⁻¹) and A5 (1/2 strength MS medium; NAA 2 mg L⁻¹; KIN 0.5 mg L⁻¹) showed intermediate effect on shoot and root induction (Plate 5). Elongated shoots of 1 to 2 cm could form roots only after transfer to rooting media with different concentrations of IBA and NAA. Maximum frequency (100%) of root induction occurred in MS medium supplemented with 2 mg L⁻¹ IBA.

Finally, the steroid, diosgenin was extracted from tubers of regenerated plants of treatments A1 to A5 separately and quantified by HPLC with PDA as detector. A simple, sensitive, accurate HPLC-PDA method was developed for the determination of diosgenin in the herbal extract. To optimize the proposed HPLC method, all of the experimental conditions were investigated. For the choice of stationary phase, reversed-phase separation was preferred due to the drawbacks of the normal phase, e.g., hydration of silica with water that can cause peak tailing. To optimize the mobile phase, different compositions were tried for chromatographic separation of the compounds. The best resolution was achieved using a mobile phase consisting of methanol: water in the ratio of 80:20 v/v, which gave satisfactory result with shape well defined and resolved peak with minimum tailing as compared to other mobile phase. Here, methanol was used as mobile phase for diosgenin detection and quantification. Changes in absorbance at 205 nm were recorded, and spectra from 190 to 400 nm were recorded on-line for peak identification. Diosgenin peak were confirmed by their retention time and PDA spectrum in comparison with pure standards. The peak area was calibrated to diosgenin content with a standard. The calibration curves (n=3) constructed for the standard were linear over the concentration range of 0.01-0.1 mg/g diosgenin. Linear regression was used to establish the calibration curve. Good linearity for diosgenin (r² = 1) was found between 0.01 mg/mL to 0.1 mg/mL. Peak areas of the standard were plotted versus the concentration and a regression analysis performed on the resultant curve. The equation of the regression line formula and correlation coefficient obtained were Y = 246422X - 0.0033 and r² = 1 for diosgenin. The LOD and LOQ were found to be 1.32 and 4.01 µg/mL respectively for diosgenin.

The retention time obtained for diosgenin peak was 4.7 minute the developed method was applied for the determination of diosgenin content in regenerated samples. Figure 2 shows the representative chromatogram of diosgenin standard as well as chromatogram of diosgenin in sample. The retention time for diosgenin peak was recorded 4.70 min. Several attempts were made earlier to increase the productivity of compounds of interest in plants the help of tissue culture 16, 17, 19, 20, 25. The diosgenin content (µg g⁻¹ DW) obtained from tubers of A1 (1 strength MS medium; IBA 1 mg L⁻¹; KIN 0.5 mg L⁻¹; BAP 1mg L⁻¹) treated plant was 217.82 ± 10.23 µg g⁻¹ DW, from tubers of A2 (1 strength MS medium; NAA 1 mg L⁻¹) treated plant was 271.96 ± 12.35 µg g⁻¹ DW, from tubers of A3 (1 strength MS medium; IBA 1 mg L⁻¹) treated plant was 202.41 ± 15.34 µg g⁻¹ DW, from tubers of A4 (1 strength MS medium; NAA 2 mg L⁻¹; KIN 0.5 mg L⁻¹) treated plant was 1526.99 ± 26.32 µg g⁻¹ DW and from tubers of A5 (1/2 strength MS medium; NAA 2 mg L⁻¹; KIN 0.5 mg L⁻¹) treated plant was 821.03 ± 20.34 µg g⁻¹ DW (Figure 2). The data shown clearly that the maximum diosgenin content was obtained for tubers of A5 (1/2 strength MS medium; NAA 2 mg L⁻¹; KIN 0.5 mg L⁻¹) which was supplemented with 2 mg L⁻¹ NAA and 0.5 mg L⁻¹ KIN. Treatment A2 have third highest diosgenin content in their tubers was also supplemented with NAA (1 mg L⁻¹).

Augmentation of Diosgenin

The isolation and quantification of the steroid, diosgenin was successfully carried out. The possibility of confirming the augmentation of diosgenin using tissue culture is observed clearly from the HPLC results. This is the answer to one of the questions posed for the present work. Nino et al. reported mobile phase acetonitrile: water in ratio 90:10(v/v) for diosgenin detection and quantification. Similarly, Warke et al. and Li et al. also reported mobile phase acetonitrile: water in ratio 90:10(v/v) for diosgenin detection and quantification. In the present study, methanol and water were used in ratio 80:20 (v/v) for diosgenin detection and quantification. Sabir et al. reported a marked increase in withanolide A and decrease in withaferin A production in the in vitro shoot cultures compared to the shoots of field-grown Withania somnifera plants. Multiple shoots cultures exhibited an increase in withanolide A accumulation compared to shoots of the mother plant. In vitro generated root cultures as well as callus and suspension cultures also produced withanolides though at lower levels. Reinert et al. reported that callus and suspension cultures derived from Dioscorea deltoidea which can accumulate the steroid diosgenin up to a level exceeding 1% of the dry weight. Further, the yield can be increased by feeding the shoots with the precursor cholesterol. Staba et al. reported diosgenin accumulation in callus and undifferentiated tissue cultures of Dioscorea seed.
Plate 1: Shoot induction and multiplication in *D. floribunda* at different combination and concentration of BAP and kinetin. (1) BAP 1 mgL$^{-1}$; Kinetin 0, (2) BAP 2 mgL$^{-1}$; Kinetin 0, (3) BAP 3 mgL$^{-1}$; Kinetin 0, (4) BAP 4 mgL$^{-1}$; Kinetin 0, (5) BAP 1 mgL$^{-1}$; Kinetin 1 mgL$^{-1}$, (6) BAP 2 mgL$^{-1}$; Kinetin 1 mgL$^{-1}$, (7) BAP 3 mgL$^{-1}$; Kinetin 2 mgL$^{-1}$, (8) BAP 4 mgL$^{-1}$; Kinetin 3 mgL$^{-1}$, (9) BAP 1 mgL$^{-1}$, Kinetin 2 mgL$^{-1}$, (10) BAP 2 mgL$^{-1}$, Kinetin 3 mgL$^{-1}$, (11) BAP 3 mgL$^{-1}$, Kinetin 2 mgL$^{-1}$, (12) BAP 4 mgL$^{-1}$, Kinetin 2 mgL$^{-1}$, (13) BAP 1 mgL$^{-1}$, Kinetin 3 mgL$^{-1}$, (14) BAP 2 mgL$^{-1}$, Kinetin 3 mgL$^{-1}$, (15) BAP 3 mgL$^{-1}$, Kinetin 3 mgL$^{-1}$, (16) BAP 4 mgL$^{-1}$, Kinetin 3 mgL$^{-1}$, (17) BAP 1 mgL$^{-1}$, Kinetin 4 mgL$^{-1}$, (18) BAP 2 mgL$^{-1}$, Kinetin 4 mgL$^{-1}$, (19) BAP 3 mgL$^{-1}$, Kinetin 4 mgL$^{-1}$, (20) BAP 4 mgL$^{-1}$, Kinetin 4 mgL$^{-1}$.

Plate 2: Shoot induction and multiplication in *D. floribunda* at different concentration of BAP (A: 1 mgL$^{-1}$ BAP; B: 2 ngL$^{-1}$ BAP; C: 3 mgL$^{-1}$ BAP and D: 4 mgL$^{-1}$ BAP; E: shoot induction of *D. floribunda* on solid medium; F: shoot necrosis of induced shoot on solid medium).
Plate 3: Rhizogenesis in *D. floribunda* plantlets. A: Root induction in morphotypes A4 (0.4 mgL⁻¹ NAA and 0.1 mgL⁻¹ Kinetin); B: Root induction in morphotypes A5 (½ MS, 0.4 mgL⁻¹ NAA and 0.1 mgL⁻¹ Kinetin); C: Root culture in solid medium supplemented with NAA 2 mgL⁻¹, Kinetin 0.5 mgL⁻¹; D: Root culture in liquid medium supplemented with NAA 2 mgL⁻¹, Kinetin 0.5 mgL⁻¹.

Plate 4: Microtubers generated after 90 days in liquid culture media.

Plate 5: Effect of different hormones (NAA, BAP, IBA and Kinetin) and their combination on shoot and root induction on the explants of *Dioscorea floribunda*. A1 (1 strength MS medium, IBA 1 mgL⁻¹, KIN 0.5 mgL⁻¹, BAP 1 mgL⁻¹); A2 (1 strength MS medium, NAA 1 mgL⁻¹); A3 (1 strength MS medium, IBA 1 mgL⁻¹); A4 (1 strength MS medium, NAA 2 mgL⁻¹, KIN 0.5 mgL⁻¹); A5 (½ strength MS medium, NAA 2 mgL⁻¹, KIN
Figure 2: Graph of diosgenin content in microtubers (µg g⁻¹) dry weight according to different treatments. A1 (1 strength MS medium, IBA 1 mgL⁻¹, KIN 0.5 mgL⁻¹, BAP 1 mgL⁻¹); A2 (1 strength MS medium, NAA 1 mgL⁻¹); A3 (1 strength MS medium, IBA 1 mgL⁻¹); A4 (1 strength MS medium, NAA 2 mgL⁻¹, KIN 0.5 mgL⁻¹); A5 (1/2 strength MS medium, NAA 2mgL⁻¹, KIN 0.5 mgL⁻¹).

Tissue cultures of callus obtained from seeds of various Dioscorea species have been established, including the preferred D. deltoidea as well as D. composita, D. spiculiflora and D. floribunda. D. deltoidea tissue cultures have been found to yield diosgenin in amounts far in excess of the amounts obtained from tissue cultures of the other Dioscorea species [11]. The addition of autoclaved mycelia of non-host specific fungi to cell suspension cultures of Dioscorea deltoidea improved diosgenin production by as much as 72% compared to control cultures while phytoalexin elicitors’ laminarin, arachidonic acid and chitin added to D. deltoidea cultures had no stimulating effect on the diosgenin level [12].

Several reports are available in literature with the report of diosgenin quantification in different species of Dioscorea as 0.2% in D. polygonaide [13], 0.2-2.3% in D. albaeoides [14], 1.92% in D. prageri [15], 1.3% in D. villoso [16], 0.18-0.55% D. zingiberenzis [17] and 0.02-2.64% in D. polygonoides [18]. Here for the first time we are reporting the diosgenin quantification in tissue cultured microtubers of D. floribunda.

Conclusion
Multiple shoots were generated from nodal explants of Dioscorea floribunda and microtuberization was achieved from budding nodal segments using Murashige and Skoog (MS) medium supplemented with varying quantities of plant hormones as benzyl purine, indole-3-butyric acid, naphthalene acetic acid, and kinetin. The medium consisting of different combination of hormones and their concentrations showed differential responses on shoot and root induction and diosgenin accumulation in tubers. The media supplemented with 2 mgL⁻¹ naphthalene acetic acid, and 0.5 mgL⁻¹ kinetin produced viable tubers after only 3 months in culture media and accumulated a high amount of diosgenin. The faster multiple shoot formation and microtuberization is achieved more efficiently in liquid media in comparison of solid medium. Greater amount of diosgenin was obtained from the tender tissues of the test plant as compared to the plants in the field.

Conflict of interest
The authors declare no conflict of interest.

Authors’ Declaration
The authors hereby declare that the work presented in this article are original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgement
Joy is thankful to Third World Organization of Women in Science (TWOS) now Organisation of Women in Science in the Developing World (OWSDW) for funding PhD studentship under TWOS-CSIR, India sandwich programme. We thank the Director, CSIR-Central Institute for Medicinal and Aromatic Plants and Head, Department of Structural and Molecular Biology Unit for constant encouragement and support. RKY for the senior research fellowship.

References

